File size: 5,565 Bytes
0dec378
 
 
 
a484b84
0dec378
0a67e9a
 
a484b84
9958140
0dec378
 
 
b206729
0dec378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79024bb
 
b206729
b37d7c8
79024bb
3d2ee8a
b0241f6
 
a484b84
1c144e4
b206729
79024bb
1c144e4
 
 
 
b206729
0dec378
 
 
 
 
a5a56d7
b5806de
8c0b352
a3cc10d
 
 
 
 
 
 
 
 
 
 
8c0b352
79024bb
0dec378
ac36fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20c582
 
ac36fcc
b20c582
ac36fcc
 
b20c582
 
 
 
ac36fcc
b20c582
a484b84
1c144e4
b20c582
79024bb
6c31c17
 
1c144e4
6c31c17
 
b0241f6
0a67e9a
79024bb
7f2fa6c
8221a06
b0241f6
b20c582
e201fee
289d5f1
b5806de
0dec378
 
b206729
b20c582
0dec378
b20c582
0dec378
b20c582
0dec378
 
b20c582
0dec378
 
 
e2531dc
0dec378
 
b20c582
0dec378
 
 
 
 
 
b20c582
0dec378
 
 
 
 
 
b20c582
0dec378
 
 
e2531dc
0dec378
 
b20c582
0dec378
 
 
 
 
0a67e9a
b20c582
 
0a67e9a
b20c582
79024bb
 
b20c582
 
79024bb
0a67e9a
 
b20c582
 
 
 
 
0a67e9a
 
 
 
2ee61fc
0a67e9a
 
 
0784aaa
 
79024bb
0a67e9a
 
 
 
b20c582
 
0a67e9a
bf2b726
0a67e9a
a5a56d7
bf2b726
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image

translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-dev"
MAX_SEED = np.iinfo(np.int32).max

CSS = """
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

def enable_lora(lora_add):
    if not lora_add:
        return basemodel
    else:
        return lora_add

client = AsyncInferenceClient()

async def generate_image(
    prompt:str,
    model:str,
    lora_word:str,
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1):

    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    print(f'prompt:{prompt}')
    
    text = str(translator.translate(prompt, 'English')) + "," + lora_word

    try:
        image = await client.text_to_image(
            prompt=text,
            height=height,
            width=width,
            guidance_scale=scales,
            num_inference_steps=steps,
            model=model,
        )
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return image, seed

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    client = Client("finegrain/finegrain-image-enhancer")
    result = client.predict(
        input_image=handle_file(img_path),
        prompt=prompt,
        negative_prompt="",
        seed=42,
        upscale_factor=upscale_factor,
        controlnet_scale=0.6,
        controlnet_decay=1,
        condition_scale=6,
        tile_width=112,
        tile_height=144,
        denoise_strength=0.35,
        num_inference_steps=18,
        solver="DDIM",
        api_name="/process"
    )
    print(result)
    return result[1]

async def upscale_image(image, upscale_factor):
    try:
        result = get_upscale_finegrain(
            prompt="",
            img_path=image,
            upscale_factor=upscale_factor
        )
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return result

async def gen(
    prompt:str,
    lora_add:str="XLabs-AI/flux-RealismLora",
    lora_word:str="",
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1,
    upscale_factor:int=2
):
    model = enable_lora(lora_add)
    image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
    
    upscaled_image = await upscale_image(image, upscale_factor)
    return upscaled_image, seed
     
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<h1><center>Flux Lab Light</center></h1>")
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600)
            with gr.Row():
                prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6)
                sendBtn = gr.Button(scale=1, variant='primary')
        with gr.Accordion("Opciones avanzadas", open=True):
            with gr.Column(scale=1):
                width = gr.Slider(
                    label="Ancho",
                    minimum=512,
                    maximum=1280,
                    step=8,
                    value=768,
                )
                height = gr.Slider(
                    label="Alto",
                    minimum=512,
                    maximum=1280,
                    step=8,
                    value=1024,
                )
                scales = gr.Slider(
                    label="Guía",
                    minimum=3.5,
                    maximum=7,
                    step=0.1,
                    value=3.5,
                )
                steps = gr.Slider(
                    label="Pasos",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=24,
                )
                seed = gr.Slider(
                    label="Semillas",
                    minimum=-1,
                    maximum=MAX_SEED,
                    step=1,
                    value=-1,
                )
                lora_add = gr.Textbox(
                    label="Agregar Flux LoRA",
                    info="Modelo de LoRA a agregar",
                    lines=1,
                    value="XLabs-AI/flux-RealismLora",
                )
                lora_word = gr.Textbox(
                    label="Palabra clave de LoRA",
                    info="Palabra clave para activar el modelo de LoRA",
                    lines=1,
                    value="",
                )
                upscale_factor = gr.Radio(
                    label="Factor de escalado",
                    choices=[2, 3, 4],
                    value=2,
                )

    gr.on(
        triggers=[
            prompt.submit,
            sendBtn.click,
        ],
        fn=gen,
        inputs=[
            prompt,
            lora_add,
            lora_word,
            width, 
            height, 
            scales, 
            steps, 
            seed,
            upscale_factor
        ],
        outputs=[img, seed]
    )
    
if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)