Spaces:
Running
Running
File size: 3,151 Bytes
ef187eb 0916cce 0cffd40 d0f928e 63b6eaf f14baf4 0916cce 2b0f02c 11fa80e 0cffd40 8b1e96d 0916cce 86a5e68 8b1e96d ec35e66 4efab5c ec35e66 4efab5c d830279 4efab5c 8b1e96d d0f928e 0916cce 86a5e68 8b1e96d b3e3306 02072e0 ce19625 f4107e3 0916cce 9b38787 86a5e68 f14baf4 3a2b9b2 8b1e96d ce19625 f14baf4 0916cce ce19625 0916cce 86a5e68 0916cce 8b3ca8d 0916cce 86a5e68 0cffd40 8b1e96d 0cffd40 d830279 0916cce 86a5e68 0916cce 86a5e68 0916cce 86a5e68 0916cce 86a5e68 0916cce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
import torch
from diffusers import StableAudioPipeline
from huggingface_hub import hf_hub_download
import spaces
from translatepy import Translator
import numpy as np
import random
import soundfile as sf
translator = Translator()
# Constants
model = "stabilityai/stable-audio-open-1.0"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
.gradio-container {
max-width: 690px !important;
}
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
DESCRIPTION = """
<center>
Stable Audio Open 1.0 generates variable-length (up to 47s) stereo audio at 44.1kHz from text prompts. \
It comprises three components: an autoencoder that compresses waveforms into a manageable sequence length, \
a T5-based text embedding for text conditioning, and a transformer-based diffusion (DiT) model that operates in the latent space of the autoencoder.
</center>
"""
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
pipe = StableAudioPipeline.from_pretrained(
model,
torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# Function
@spaces.GPU(duration=120)
def main(
prompt,
negative="low quality",
second: float = 10.0):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
generator = torch.Generator().manual_seed(seed)
prompt = str(translator.translate(prompt, 'English'))
print(f'prompt:{prompt}')
audio = pipe(
prompt,
negative_prompt=negative,
audio_end_in_s=second,
num_inference_steps=200,
num_waveforms_per_prompt=3,
generator=generator,
).audios
os.makedirs("outputs", exist_ok=True)
base_count = len(glob(os.path.join("outputs", "*.mp4")))
audio_path = os.path.join("outputs", f"{base_count:06d}.wav")
sf.write(audio_path, audio[0].T.float().cpu().numpy(), pipe.vae.samping_rate)
return audio_path, seed
# Gradio Interface
with gr.Blocks(theme='soft', css=CSS, js=JS, title="Stable Audio Open") as iface:
with gr.Accordion(""):
gr.Markdown(DESCRIPTION)
output = gr.Audio(label="Podcast", type="filepath", interactive=False, autoplay=True, elem_classes="audio") # Create an output textbox
prompt = gr.Textbox(label="Prompt", placeholder="1000 BPM percussive sound of water drops")
negative = gr.Textbox(label="Negative prompt", placeholder="Low quality")
with gr.Row():
second = gr.Slider(5.0, 60.0, value=10.0, label="Second", step=0.1),
seed = gr.Slider(1, MAX_SEED, value=0, label="Seed", step=1),
with gr.Row():
submit_btn = gr.Button("π Send") # Create a submit button
clear_btn = gr.ClearButton([prompt, seed, output], value="ποΈ Clear") # Create a clear button
# Set up the event listeners
submit_btn.click(main, inputs=[prompt, negative, second, seed], outputs=[output, seed])
#gr.close_all()
iface.queue().launch(show_api=False) # Launch the Gradio interface |