Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
4 |
+
import os
|
5 |
+
|
6 |
+
def train_and_deploy(write_token, repo_name, license_text):
|
7 |
+
# トークンを環境変数に設定
|
8 |
+
os.environ['HF_WRITE_TOKEN'] = write_token
|
9 |
+
|
10 |
+
# ライセンスファイルを作成
|
11 |
+
with open("LICENSE", "w") as f:
|
12 |
+
f.write(license_text)
|
13 |
+
|
14 |
+
# モデルとトークナイザーの読み込み
|
15 |
+
model_name = "EleutherAI/pythia-14m" # トレーニング対象のモデル
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
|
19 |
+
# FBK-MT/mosel データセットの読み込み
|
20 |
+
dataset = load_dataset("FBK-MT/mosel")
|
21 |
+
|
22 |
+
# データセットのキーを確認
|
23 |
+
print(f"Dataset keys: {dataset.keys()}")
|
24 |
+
if "train" not in dataset:
|
25 |
+
raise KeyError("The dataset does not contain a 'train' split.")
|
26 |
+
if "test" not in dataset:
|
27 |
+
raise KeyError("The dataset does not contain a 'test' split.")
|
28 |
+
|
29 |
+
# データセットの最初のエントリのキーを確認
|
30 |
+
print(f"Sample keys in 'train' split: {dataset['train'][0].keys()}")
|
31 |
+
|
32 |
+
# データセットのトークン化
|
33 |
+
def tokenize_function(examples):
|
34 |
+
try:
|
35 |
+
texts = examples['text']
|
36 |
+
return tokenizer(texts, padding="max_length", truncation=True, max_length=128)
|
37 |
+
except KeyError as e:
|
38 |
+
print(f"KeyError: {e}")
|
39 |
+
print(f"Available keys: {examples.keys()}")
|
40 |
+
raise
|
41 |
+
|
42 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
43 |
+
|
44 |
+
# トレーニング設定
|
45 |
+
training_args = TrainingArguments(
|
46 |
+
output_dir="./results",
|
47 |
+
per_device_train_batch_size=8,
|
48 |
+
per_device_eval_batch_size=8,
|
49 |
+
evaluation_strategy="epoch",
|
50 |
+
save_strategy="epoch",
|
51 |
+
logging_dir="./logs",
|
52 |
+
logging_steps=10,
|
53 |
+
num_train_epochs=3, # トレーニングエポック数
|
54 |
+
push_to_hub=True, # Hugging Face Hubにプッシュ
|
55 |
+
hub_token=write_token,
|
56 |
+
hub_model_id=repo_name # ユーザーが入力したリポジトリ名
|
57 |
+
)
|
58 |
+
|
59 |
+
# Trainerの設定
|
60 |
+
trainer = Trainer(
|
61 |
+
model=model,
|
62 |
+
args=training_args,
|
63 |
+
train_dataset=tokenized_datasets["train"],
|
64 |
+
eval_dataset=tokenized_datasets["test"],
|
65 |
+
)
|
66 |
+
|
67 |
+
# トレーニング実行
|
68 |
+
trainer.train()
|
69 |
+
|
70 |
+
# モデルをHugging Face Hubにプッシュ
|
71 |
+
trainer.push_to_hub()
|
72 |
+
|
73 |
+
return f"モデルが'{repo_name}'リポジトリにデプロイされました!"
|
74 |
+
|
75 |
+
# Gradio UI
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("### pythia トレーニングとデプロイ")
|
78 |
+
token_input = gr.Textbox(label="Hugging Face Write Token", placeholder="トークンを入力してください...")
|
79 |
+
repo_input = gr.Textbox(label="リポジトリ名", placeholder="デプロイするリポジトリ名を入力してください...")
|
80 |
+
license_input = gr.Textbox(label="ライセンス", placeholder="ライセンス情報を入力してください...")
|
81 |
+
output = gr.Textbox(label="出力")
|
82 |
+
train_button = gr.Button("デプロイ")
|
83 |
+
|
84 |
+
train_button.click(fn=train_and_deploy, inputs=[token_input, repo_input, license_input], outputs=output)
|
85 |
+
|
86 |
+
demo.launch()
|