Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, TrainerCallback | |
from datasets import load_dataset, DatasetDict | |
import os | |
import time | |
# トレーニングの進行状況を格納するグローバル変数 | |
progress_info = { | |
"status": "待機中", | |
"progress": 0, | |
"time_remaining": None | |
} | |
def update_progress(trainer, epoch, step, total_steps, time_remaining): | |
global progress_info | |
progress_info["status"] = f"エポック {epoch + 1} / {trainer.args.num_train_epochs}, ステップ {step + 1} / {total_steps}" | |
progress_info["progress"] = (step + 1) / total_steps | |
progress_info["time_remaining"] = time_remaining | |
def train_and_deploy(write_token, repo_name, license_text): | |
global progress_info | |
progress_info["status"] = "トレーニング開始" | |
progress_info["progress"] = 0 | |
progress_info["time_remaining"] = None | |
# トークンを環境変数に設定 | |
os.environ['HF_WRITE_TOKEN'] = write_token | |
# ライセンスファイルを作成 | |
with open("LICENSE", "w") as f: | |
f.write(license_text) | |
# モデルとトークナイザーの読み込み | |
model_name = "EleutherAI/pythia-14m" # トレーニング対象のモデル | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# FBK-MT/mosel データセットの読み込み | |
dataset = load_dataset("FBK-MT/mosel") | |
# データセットのキーを確認 | |
print(f"Dataset keys: {dataset.keys()}") | |
if "train" not in dataset: | |
raise KeyError("The dataset does not contain a 'train' split.") | |
# testセットが存在しない場合、trainセットを分割してtestセットを作成 | |
if "test" not in dataset: | |
dataset = dataset["train"].train_test_split(test_size=0.1) | |
dataset = DatasetDict({ | |
"train": dataset["train"], | |
"test": dataset["test"] | |
}) | |
# データセットの最初のエントリのキーを確認 | |
print(f"Sample keys in 'train' split: {dataset['train'][0].keys()}") | |
# データセットのトークン化 | |
def tokenize_function(examples): | |
try: | |
texts = examples['text'] | |
return tokenizer(texts, padding="max_length", truncation=True, max_length=128) | |
except KeyError as e: | |
print(f"KeyError: {e}") | |
print(f"Available keys: {examples.keys()}") | |
raise | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# トレーニング設定 | |
training_args = TrainingArguments( | |
output_dir="./results", | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
logging_dir="./logs", | |
logging_steps=10, | |
num_train_epochs=3, # トレーニングエポック数 | |
push_to_hub=True, # Hugging Face Hubにプッシュ | |
hub_token=write_token, | |
hub_model_id=repo_name # ユーザーが入力したリポジトリ名 | |
) | |
# Trainerの設定 | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["test"], | |
callbacks=[CustomCallback()] | |
) | |
# トレーニング実行 | |
start_time = time.time() | |
trainer.train() | |
end_time = time.time() | |
total_time = end_time - start_time | |
progress_info["status"] = f"トレーニング完了(所要時間: {total_time:.2f}秒)" | |
progress_info["progress"] = 1 | |
progress_info["time_remaining"] = 0 | |
# モデルをHugging Face Hubにプッシュ | |
trainer.push_to_hub() | |
return f"モデルが'{repo_name}'リポジトリにデプロイされました!" | |
class CustomCallback(TrainerCallback): | |
def on_train_begin(self, args, state, control, **kwargs): | |
global progress_info | |
progress_info["status"] = "トレーニング開始" | |
progress_info["progress"] = 0 | |
progress_info["time_remaining"] = None | |
def on_step_begin(self, args, state, control, **kwargs): | |
global progress_info | |
total_steps = state.max_steps | |
current_step = state.global_step | |
progress_info["status"] = f"エポック {state.epoch + 1} / {args.num_train_epochs}, ステップ {current_step + 1} / {total_steps}" | |
progress_info["progress"] = (current_step + 1) / total_steps | |
progress_info["time_remaining"] = None | |
def on_step_end(self, args, state, control, **kwargs): | |
global progress_info | |
total_steps = state.max_steps | |
current_step = state.global_step | |
elapsed_time = time.time() - state.log_history[0].get("epoch_time", time.time()) # デフォルト値を追加 | |
time_per_step = elapsed_time / (current_step + 1) | |
remaining_steps = total_steps - current_step | |
time_remaining = time_per_step * remaining_steps | |
progress_info["status"] = f"エポック {state.epoch + 1} / {args.num_train_epochs}, ステップ {current_step + 1} / {total_steps}" | |
progress_info["progress"] = (current_step + 1) / total_steps | |
progress_info["time_remaining"] = f"{time_remaining:.2f}秒" | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("### pythia トレーニングとデプロイ") | |
token_input = gr.Textbox(label="Hugging Face Write Token", placeholder="トークンを入力してください...") | |
repo_input = gr.Textbox(label="リポジトリ名", placeholder="デプロイするリポジトリ名を入力してください...") | |
license_input = gr.Textbox(label="ライセンス", placeholder="ライセンス情報を入力してください...") | |
output = gr.Textbox(label="出力") | |
progress = gr.Progress(track_tqdm=True) | |
status = gr.Textbox(label="ステータス", value="待機中") | |
time_remaining = gr.Textbox(label="残り時間", value="待機中") | |
train_button = gr.Button("デプロイ") | |
def update_ui(): | |
global progress_info | |
status.value = progress_info["status"] | |
progress.update(value=progress_info["progress"]) | |
time_remaining.value = f"{progress_info['time_remaining']}秒" if progress_info['time_remaining'] else "待機中" | |
train_button.click(fn=train_and_deploy, inputs=[token_input, repo_input, license_input], outputs=output) | |
train_button.click(fn=update_ui, inputs=[], outputs=[status, progress, time_remaining]) | |
demo.launch() |