Spaces:
Sleeping
Sleeping
sainathBelagavi
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
from datetime import datetime
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
import torch
|
8 |
+
|
9 |
+
class TranscriptAnalyzer:
|
10 |
+
def __init__(self):
|
11 |
+
# Initialize the model and tokenizer
|
12 |
+
self.model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
14 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
self.model_name,
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
device_map="auto"
|
18 |
+
)
|
19 |
+
|
20 |
+
def extract_dates(self, text: str):
|
21 |
+
date_patterns = [
|
22 |
+
r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}',
|
23 |
+
r'\d{4}[-/]\d{1,2}[-/]\d{1,2}',
|
24 |
+
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'
|
25 |
+
]
|
26 |
+
dates = []
|
27 |
+
for pattern in date_patterns:
|
28 |
+
matches = re.finditer(pattern, text)
|
29 |
+
for match in matches:
|
30 |
+
dates.append(match.group())
|
31 |
+
return dates
|
32 |
+
|
33 |
+
def extract_claim_numbers(self, text: str):
|
34 |
+
claim_patterns = [
|
35 |
+
r'claim\s+#?\s*\d+[-\w]*',
|
36 |
+
r'#\s*\d+[-\w]*',
|
37 |
+
r'case\s+#?\s*\d+[-\w]*'
|
38 |
+
]
|
39 |
+
claims = []
|
40 |
+
for pattern in claim_patterns:
|
41 |
+
matches = re.finditer(pattern, text, re.IGNORECASE)
|
42 |
+
for match in matches:
|
43 |
+
claims.append(match.group())
|
44 |
+
return claims
|
45 |
+
|
46 |
+
def generate_prompt(self, transcript: str):
|
47 |
+
dates = self.extract_dates(transcript)
|
48 |
+
claims = self.extract_claim_numbers(transcript)
|
49 |
+
|
50 |
+
return f"""<s>[INST] Please analyze this meeting transcript with extreme precision and provide a structured analysis.
|
51 |
+
Remember to:
|
52 |
+
1. Only include information explicitly stated
|
53 |
+
2. Mark unclear information as "UNCLEAR"
|
54 |
+
3. Preserve exact numbers, dates, and claims
|
55 |
+
4. Focus on factual content
|
56 |
+
|
57 |
+
Identified dates: {', '.join(dates) if dates else 'None'}
|
58 |
+
Identified claims: {', '.join(claims) if claims else 'None'}
|
59 |
+
|
60 |
+
Please analyze:
|
61 |
+
{transcript}
|
62 |
+
|
63 |
+
Provide your analysis in this format:
|
64 |
+
PARTICIPANTS:
|
65 |
+
- List participants and their roles
|
66 |
+
|
67 |
+
CONTEXT:
|
68 |
+
- Meeting purpose
|
69 |
+
- Duration (if mentioned)
|
70 |
+
|
71 |
+
KEY POINTS:
|
72 |
+
- Main topics
|
73 |
+
- Decisions made
|
74 |
+
- Important numbers/metrics
|
75 |
+
|
76 |
+
ACTION ITEMS:
|
77 |
+
- Tasks and assignments
|
78 |
+
- Deadlines
|
79 |
+
- Responsible parties
|
80 |
+
|
81 |
+
FOLLOW UP:
|
82 |
+
- Next meetings
|
83 |
+
- Pending items [/INST]</s>"""
|
84 |
+
|
85 |
+
def analyze_transcript(self, transcript: str):
|
86 |
+
# Generate prompt
|
87 |
+
prompt = self.generate_prompt(transcript)
|
88 |
+
|
89 |
+
# Tokenize input
|
90 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
91 |
+
|
92 |
+
# Generate response
|
93 |
+
with torch.no_grad():
|
94 |
+
outputs = self.model.generate(
|
95 |
+
**inputs,
|
96 |
+
max_new_tokens=1000,
|
97 |
+
temperature=0.1,
|
98 |
+
do_sample=True,
|
99 |
+
pad_token_id=self.tokenizer.eos_token_id
|
100 |
+
)
|
101 |
+
|
102 |
+
# Decode response
|
103 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
104 |
+
|
105 |
+
# Extract the assistant's response (after the prompt)
|
106 |
+
response = response.split("[/INST]")[-1].strip()
|
107 |
+
|
108 |
+
return response
|
109 |
+
|
110 |
+
def process_transcript(transcript: str):
|
111 |
+
analyzer = TranscriptAnalyzer()
|
112 |
+
analysis = analyzer.analyze_transcript(transcript)
|
113 |
+
return analysis
|
114 |
+
|
115 |
+
# Create Gradio interface
|
116 |
+
iface = gr.Interface(
|
117 |
+
fn=process_transcript,
|
118 |
+
inputs=[
|
119 |
+
gr.Textbox(
|
120 |
+
lines=10,
|
121 |
+
label="Enter Meeting Transcript",
|
122 |
+
placeholder="Paste your meeting transcript here..."
|
123 |
+
)
|
124 |
+
],
|
125 |
+
outputs=gr.Textbox(
|
126 |
+
label="Analysis Result",
|
127 |
+
lines=20
|
128 |
+
),
|
129 |
+
title="Meeting Transcript Analyzer",
|
130 |
+
description="Analyze meeting transcripts to extract key information, dates, claims, and action items.",
|
131 |
+
examples=[
|
132 |
+
["Meeting started on March 15, 2024 at 2:30 PM\nClaim #12345-ABC discussed regarding property damage\nJohn (Project Manager): Let's review the Q1 budget..."],
|
133 |
+
["Sarah (Team Lead): Good morning everyone. Today's meeting is about the new product launch.\nMike (Marketing): We're targeting April 1st, 2024 for the release.\nClaim #789-XYZ needs to be resolved before launch."]
|
134 |
+
]
|
135 |
+
)
|
136 |
+
|
137 |
+
# Launch the app
|
138 |
+
iface.launch()
|