Spaces:
Sleeping
Sleeping
File size: 5,378 Bytes
a363c1c e123732 a363c1c e123732 cab4e03 e123732 a363c1c e123732 cab4e03 e123732 cab4e03 e123732 cab4e03 e123732 cab4e03 a363c1c e123732 a363c1c e123732 a363c1c e123732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# app.py
import gradio as gr
import json
import re
import os
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
# First, login with the Hugging Face token from secrets
try:
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
if hf_token:
login(token=hf_token)
else:
raise ValueError("HUGGINGFACE_TOKEN not found in environment variables")
except Exception as e:
print(f"Error during Hugging Face login: {str(e)}")
raise
class TranscriptAnalyzer:
def __init__(self):
try:
# Initialize the model and tokenizer with auth token
self.model_name = "microsoft/Phi-3.5-mini-instruct"
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
use_auth_token=hf_token,
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
use_auth_token=hf_token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
def extract_dates(self, text: str):
date_patterns = [
r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}',
r'\d{4}[-/]\d{1,2}[-/]\d{1,2}',
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'
]
dates = []
for pattern in date_patterns:
matches = re.finditer(pattern, text)
for match in matches:
dates.append(match.group())
return dates
def extract_claim_numbers(self, text: str):
claim_patterns = [
r'claim\s+#?\s*\d+[-\w]*',
r'#\s*\d+[-\w]*',
r'case\s+#?\s*\d+[-\w]*'
]
claims = []
for pattern in claim_patterns:
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
claims.append(match.group())
return claims
def generate_prompt(self, transcript: str):
dates = self.extract_dates(transcript)
claims = self.extract_claim_numbers(transcript)
return f"""<s>[INST] Please analyze this meeting transcript with extreme precision and provide a structured analysis.
Remember to:
1. Only include information explicitly stated
2. Mark unclear information as "UNCLEAR"
3. Preserve exact numbers, dates, and claims
4. Focus on factual content
Identified dates: {', '.join(dates) if dates else 'None'}
Identified claims: {', '.join(claims) if claims else 'None'}
Please analyze:
{transcript}
Provide your analysis in this format:
PARTICIPANTS:
- List participants and their roles
CONTEXT:
- Meeting purpose
- Duration (if mentioned)
KEY POINTS:
- Main topics
- Decisions made
- Important numbers/metrics
ACTION ITEMS:
- Tasks and assignments
- Deadlines
- Responsible parties
FOLLOW UP:
- Next meetings
- Pending items [/INST]</s>"""
def analyze_transcript(self, transcript: str):
try:
# Generate prompt
prompt = self.generate_prompt(transcript)
# Tokenize input
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=1000,
temperature=0.1,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
# Decode response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the assistant's response (after the prompt)
response = response.split("[/INST]")[-1].strip()
return response
except Exception as e:
return f"Error analyzing transcript: {str(e)}"
def process_transcript(transcript: str):
try:
analyzer = TranscriptAnalyzer()
analysis = analyzer.analyze_transcript(transcript)
return analysis
except Exception as e:
return f"Error processing transcript: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=process_transcript,
inputs=[
gr.Textbox(
lines=10,
label="Enter Meeting Transcript",
placeholder="Paste your meeting transcript here..."
)
],
outputs=gr.Textbox(
label="Analysis Result",
lines=20
),
title="Meeting Transcript Analyzer",
description="Analyze meeting transcripts to extract key information, dates, claims, and action items.",
examples=[
["Meeting started on March 15, 2024 at 2:30 PM\nClaim #12345-ABC discussed regarding property damage\nJohn (Project Manager): Let's review the Q1 budget..."],
["Sarah (Team Lead): Good morning everyone. Today's meeting is about the new product launch.\nMike (Marketing): We're targeting April 1st, 2024 for the release.\nClaim #789-XYZ needs to be resolved before launch."]
]
)
# Launch the app
if __name__ == "__main__":
iface.launch() |