Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
from bokeh.models.widgets import Button
|
3 |
-
from bokeh.models import CustomJS
|
4 |
-
from streamlit_bokeh_events import streamlit_bokeh_events
|
5 |
from PyPDF2 import PdfReader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
import os
|
@@ -12,110 +9,113 @@ from langchain_google_genai import ChatGoogleGenerativeAI
|
|
12 |
from langchain.chains.question_answering import load_qa_chain
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
from dotenv import load_dotenv
|
|
|
15 |
|
16 |
-
# Load environment variables and configure API
|
17 |
load_dotenv()
|
18 |
os.getenv("GOOGLE_API_KEY")
|
19 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
def get_pdf_text(pdf_docs):
|
22 |
-
text
|
23 |
for pdf in pdf_docs:
|
24 |
-
pdf_reader
|
25 |
for page in pdf_reader.pages:
|
26 |
-
text
|
27 |
-
return
|
|
|
|
|
28 |
|
29 |
def get_text_chunks(text):
|
30 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
31 |
chunks = text_splitter.split_text(text)
|
32 |
return chunks
|
33 |
|
|
|
34 |
def get_vector_store(text_chunks):
|
35 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
36 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
37 |
vector_store.save_local("faiss_index")
|
38 |
|
|
|
39 |
def get_conversational_chain():
|
|
|
40 |
prompt_template = """
|
41 |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
42 |
-
provided context just say,
|
43 |
Context:\n {context}?\n
|
44 |
Question: \n{question}\n
|
45 |
Answer:
|
46 |
"""
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
|
|
50 |
return chain
|
51 |
|
|
|
|
|
52 |
def user_input(user_question):
|
53 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
|
54 |
new_db = FAISS.load_local("faiss_index", embeddings)
|
55 |
docs = new_db.similarity_search(user_question)
|
|
|
56 |
chain = get_conversational_chain()
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
st.write("Reply: ", response["output_text"])
|
59 |
|
60 |
-
def main():
|
61 |
-
st.set_page_config("Chat PDF")
|
62 |
-
st.header("Chat with PDF using Gemini💁")
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
raw_text = get_pdf_text(pdf_docs)
|
73 |
text_chunks = get_text_chunks(raw_text)
|
74 |
get_vector_store(text_chunks)
|
75 |
-
st.success("
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
recognition.interimResults = true;
|
85 |
-
|
86 |
-
recognition.onresult = function (e) {
|
87 |
-
var value = "";
|
88 |
-
for (var i = e.resultIndex; i < e.results.length; ++i) {
|
89 |
-
if (e.results[i].isFinal) {
|
90 |
-
value += e.results[i][0].transcript;
|
91 |
-
}
|
92 |
-
}
|
93 |
-
if (value != "") {
|
94 |
-
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
|
95 |
-
}
|
96 |
-
}
|
97 |
-
recognition.onerror = function (event) {
|
98 |
-
console.error('Speech recognition error', event);
|
99 |
-
}
|
100 |
-
recognition.start();
|
101 |
-
"""))
|
102 |
-
|
103 |
-
# Streamlit Bokeh event for receiving transcribed text
|
104 |
-
result = streamlit_bokeh_events(
|
105 |
-
stt_button,
|
106 |
-
events="GET_TEXT",
|
107 |
-
key="listen",
|
108 |
-
refresh_on_update=False,
|
109 |
-
override_height=75,
|
110 |
-
debounce_time=0
|
111 |
-
)
|
112 |
-
|
113 |
-
# Process the transcribed text
|
114 |
-
if result:
|
115 |
-
if "GET_TEXT" in result:
|
116 |
-
user_question = result.get("GET_TEXT")
|
117 |
-
st.write(f"Transcribed Question: {user_question}")
|
118 |
-
user_input(user_question)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
-
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
from PyPDF2 import PdfReader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
import os
|
|
|
9 |
from langchain.chains.question_answering import load_qa_chain
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
from dotenv import load_dotenv
|
12 |
+
import speech_recognition as sr
|
13 |
|
|
|
14 |
load_dotenv()
|
15 |
os.getenv("GOOGLE_API_KEY")
|
16 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
17 |
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
def get_pdf_text(pdf_docs):
|
24 |
+
text=""
|
25 |
for pdf in pdf_docs:
|
26 |
+
pdf_reader= PdfReader(pdf)
|
27 |
for page in pdf_reader.pages:
|
28 |
+
text+= page.extract_text()
|
29 |
+
return text
|
30 |
+
|
31 |
+
|
32 |
|
33 |
def get_text_chunks(text):
|
34 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
35 |
chunks = text_splitter.split_text(text)
|
36 |
return chunks
|
37 |
|
38 |
+
|
39 |
def get_vector_store(text_chunks):
|
40 |
+
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
41 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
42 |
vector_store.save_local("faiss_index")
|
43 |
|
44 |
+
|
45 |
def get_conversational_chain():
|
46 |
+
|
47 |
prompt_template = """
|
48 |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
49 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
50 |
Context:\n {context}?\n
|
51 |
Question: \n{question}\n
|
52 |
Answer:
|
53 |
"""
|
54 |
+
|
55 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro",
|
56 |
+
temperature=0.3)
|
57 |
+
|
58 |
+
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
59 |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
60 |
+
|
61 |
return chain
|
62 |
|
63 |
+
|
64 |
+
|
65 |
def user_input(user_question):
|
66 |
+
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
67 |
+
|
68 |
new_db = FAISS.load_local("faiss_index", embeddings)
|
69 |
docs = new_db.similarity_search(user_question)
|
70 |
+
|
71 |
chain = get_conversational_chain()
|
72 |
+
|
73 |
+
|
74 |
+
response = chain(
|
75 |
+
{"input_documents":docs, "question": user_question}
|
76 |
+
, return_only_outputs=True)
|
77 |
+
|
78 |
+
print(response)
|
79 |
st.write("Reply: ", response["output_text"])
|
80 |
|
|
|
|
|
|
|
81 |
|
82 |
+
def record_audio():
|
83 |
+
r = sr.Recognizer()
|
84 |
+
with sr.Microphone() as source:
|
85 |
+
st.write("Please speak your question...")
|
86 |
+
audio = r.listen(source)
|
87 |
+
try:
|
88 |
+
text = r.recognize_google(audio)
|
89 |
+
st.write("You said: " + text)
|
90 |
+
return text
|
91 |
+
except sr.UnknownValueError:
|
92 |
+
st.error("Could not understand audio")
|
93 |
+
return None
|
94 |
+
except sr.RequestError as e:
|
95 |
+
st.error(f"Could not request results; {e}")
|
96 |
+
return None
|
97 |
|
98 |
+
ef main():
|
99 |
+
st.set_page_config("Chat PDF")
|
100 |
+
st.header("Chat with PDF using Gemini💁")
|
101 |
+
|
102 |
+
with st.sidebar:
|
103 |
+
st.title("Menu:")
|
104 |
+
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
|
105 |
+
if st.button("Submit & Process"):
|
106 |
+
with st.spinner("Processing..."):
|
107 |
raw_text = get_pdf_text(pdf_docs)
|
108 |
text_chunks = get_text_chunks(raw_text)
|
109 |
get_vector_store(text_chunks)
|
110 |
+
st.success("Done")
|
111 |
+
|
112 |
+
# User can choose to input question via text or voice
|
113 |
+
user_question = st.text_input("Ask a Question from the PDF Files")
|
114 |
+
if st.button("Record Question via Microphone"):
|
115 |
+
user_question = record_audio()
|
116 |
+
|
117 |
+
if user_question:
|
118 |
+
user_input(user_question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
main()
|