Spaces:
Sleeping
Sleeping
File size: 7,731 Bytes
7987d77 d36cfea 7987d77 2510e9d 7987d77 d36cfea 7987d77 d36cfea 7987d77 ed3d9c4 7987d77 ed3d9c4 7987d77 77c8f22 d64ccfa 7987d77 a8767ed d36cfea 7987d77 a8767ed d36cfea 7987d77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import pandas as pd
from langchain.memory import VectorStoreRetrieverMemory
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.prompts import PromptTemplate
import chromadb
import os
from uuid import uuid4
from langchain_google_genai import ChatGoogleGenerativeAI
# Initialize persistent client
CHROMA_PATH = "./vectordb-chroma/gformdb"
os.makedirs(CHROMA_PATH, exist_ok=True)
def process_files(csv_file, gemini_key, user_aspek, pdf_file, model):
try:
context = ""
def context_search(query="a",source_name=False, k=5):
if source_name==True:
results = vectorstore.similarity_search(
query=query,
k=k,
filter={"source": source_name}
)
else:
results = vectorstore.similarity_search(
query=query,
k=k,
)
for res in results:
page_content = res.page_content
metadata = res.metadata
return page_content, metadata
def format_qa_efficient(data_path):
data = pd.read_csv(data_path)
data.head()
qa_efficient = ""
indexs = 0
Question = ""
for column in data.columns[3:]: # Lewati kolom Timestamp, Email Address, dan Nama
qa_efficient += f"Nomor-{indexs+1}.{column}:\n"
indexs += 1
Question += column
for index, row in data.iterrows():
name = row['Nama']
email = row["Email_Address"]
answer = row[column]
qa_efficient += f"- {name}|{email}: {answer}\n"
qa_efficient += "\n" # Baris kosong antara setiap pertanyaan
return qa_efficient, Question
# Set OpenAI API
if gemini_key == "":
gemini_key = os.getenv('GEMINI_API_KEY')
# Process CSV (Gradio provides the file path directly)
QA, Question = format_qa_efficient(csv_file)
if pdf_file:
# Initialize Chroma client
persistent_client = chromadb.PersistentClient(path=CHROMA_PATH)
collection = persistent_client.get_or_create_collection("RAG")
vectorstore = Chroma(
client=persistent_client,
collection_name=collection.name,
embedding_function=OpenAIEmbeddings()
)
res, metadata = context_search(pdf_file,k=1)
if metadata == pdf_file.name:
# Process PDF (Gradio provides the file path directly)
pages = PyPDFLoader(pdf_file.name).load_and_split()
uuids = [str(uuid4()) for _ in range(len(pages))]
vectorstore.add_documents(documents=pages, ids=uuids)
context, metadata = context_search(Question, pdf_file.name)
elif pdf_file == False:
context = "Tidak ada context tambahan yang diberikan, tolong gunakan pengetahuan anda untuk menjawab pertanyaan"
# Evaluation template
TEMPLATE = """
Kamu adalah AI evaluator pendidikan. Nilai jawaban siswa berikut menggunakan panduan ini:
Buat output dengan format(format ini untuk satu murid, jadi selesaikan dulu 1 murid untuk semua nomor, baru ke murid berikutnya):
HASIL EVALUASI
=============
Nama dan Email Murid:
[Nomor Soal].
Nilai: [Sesuaikan dengan Aspek Penilaian yang diberikan user]
Alasan: [alasan singkat penilaian]
Saran Perbaikan: [saran]
[buat seperti di atas untuk setiap jawaban]
================
Rata-rata Nilai: [nilai]
Rekomendasi Umum:
[rekomendasi]
MATERI REFERENSI:
{context}
SOAL & JAWABAN:
{QA}
Aspek Penilaian yang diberikan user:
{Aspek}
"""
PROMPT = PromptTemplate(
input_variables=["QA", "context", "Aspek"],
template=TEMPLATE
)
# Initialize ChatGPT
chat = ChatGoogleGenerativeAI(model=model, api_key=gemini_key)
chain = PROMPT | chat
# Generate evaluation
Aspek_penilaian = user_aspek
response = chain.invoke({
"Aspek": Aspek_penilaian,
"QA": QA,
"context": context
})
return response.content
except Exception as e:
return f"Error occurred: {str(e)}\nType: {type(e)}"
def load_demo_files(checked):
if checked:
return gr.update(value="./demo.csv"), gr.update(value="./demo.pdf")
else:
return gr.update(value=None), gr.update(value=None)
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Quiz Evaluator", theme=gr.themes.Soft()) as app:
with gr.Column(scale=1):
gr.Markdown(
"""
# 📝 Quiz Response Evaluator
Upload your quiz responses (CSV) and reference material (PDF) to get AI-powered evaluation.
"""
)
with gr.Row():
with gr.Column(scale=1):
csv_input = gr.File(
label="Quiz Responses (CSV)",
file_types=[".csv"]
)
with gr.Column(scale=1):
pdf_input = gr.File(
label="Reference Material (PDF)",
file_types=[".pdf"]
)
demo_checkbox = gr.Checkbox(
label="Use Demo Files",
value=False
)
demo_checkbox.change(
fn=load_demo_files,
inputs=[demo_checkbox],
outputs=[csv_input, pdf_input]
)
user_aspek = gr.Textbox(
label="Aspek",
placeholder="isi dengan bagaimana cara AI akan menilai jawaban",
show_copy_button=True,
value = "Jika Jawaban salah berikan nilai 0, jika jawaban benar namun tidak tepat berikan nilai 50, jika jawaban benar dan lengkap serta penjelasan baik, beri nilai 100"
)
model_name = gr.Textbox(
label="Gemini Model",
placeholder="input your Gemini model",
value="gemini-1.5-pro"
)
api_key = gr.Textbox(
label="Gemini API Key",
placeholder="Enter your Gemini API key, default is my API key, use it wisely XD",
type="password"
)
submit_btn = gr.Button(
"Evaluate Responses",
variant="primary",
size="lg"
)
# Using Textbox instead of Markdown for better formatting
output = gr.Textbox(
label="Evaluation Results",
lines=20,
max_lines=30,
show_copy_button=True
)
submit_btn.click(
fn=process_files,
inputs=[csv_input,api_key,user_aspek,pdf_input,model_name],
outputs=output
)
return app
# Launch the interface
if __name__ == "__main__":
app = create_interface()
app.launch(share=True) |