Spaces:
Sleeping
Sleeping
saifeddinemk
commited on
Commit
•
7826a83
1
Parent(s):
bb55f20
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import LlamaTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load the tokenizer and model
|
7 |
+
tokenizer = LlamaTokenizer.from_pretrained("WhiteRabbitNeo/WhiteRabbitNeo-13B-v1")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("WhiteRabbitNeo/WhiteRabbitNeo-13B-v1")
|
9 |
+
|
10 |
+
# Initialize the FastAPI app
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Define a request body model for input
|
14 |
+
class LogAnalysisRequest(BaseModel):
|
15 |
+
logs: list
|
16 |
+
|
17 |
+
# Define the /analyze endpoint
|
18 |
+
@app.post("/analyze")
|
19 |
+
async def analyze_logs(request: LogAnalysisRequest):
|
20 |
+
# Check if logs are provided
|
21 |
+
if not request.logs:
|
22 |
+
raise HTTPException(status_code=400, detail="No logs provided.")
|
23 |
+
|
24 |
+
# Prepare the input for the model
|
25 |
+
input_texts = ["Analyze this log for malicious activity: " + log for log in request.logs]
|
26 |
+
inputs = tokenizer(input_texts, return_tensors="pt", padding=True, truncation=True)
|
27 |
+
|
28 |
+
# Generate predictions
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model.generate(
|
31 |
+
inputs["input_ids"],
|
32 |
+
max_length=100,
|
33 |
+
num_return_sequences=1
|
34 |
+
)
|
35 |
+
|
36 |
+
# Decode the predictions
|
37 |
+
results = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
38 |
+
|
39 |
+
# Format and return the results
|
40 |
+
response = {"analysis_results": results}
|
41 |
+
return response
|
42 |
+
|
43 |
+
# Run the FastAPI app (if running this script directly)
|
44 |
+
if __name__ == "__main__":
|
45 |
+
import uvicorn
|
46 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|