Spaces:
Sleeping
Sleeping
saifeddinemk
commited on
Commit
•
2620283
1
Parent(s):
e71fade
Fixed app v2
Browse files
app.py
CHANGED
@@ -1,16 +1,22 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
|
|
4 |
import uvicorn
|
5 |
|
6 |
# Initialize FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Define request model for log data
|
16 |
class LogRequest(BaseModel):
|
@@ -23,6 +29,7 @@ class AnalysisResponse(BaseModel):
|
|
23 |
# Define the route for security log analysis
|
24 |
@app.post("/analyze_security_logs", response_model=AnalysisResponse)
|
25 |
async def analyze_security_logs(request: LogRequest):
|
|
|
26 |
try:
|
27 |
# Security-focused prompt
|
28 |
prompt = (
|
@@ -32,11 +39,18 @@ async def analyze_security_logs(request: LogRequest):
|
|
32 |
f"{request.log_data}"
|
33 |
)
|
34 |
|
35 |
-
# Generate response from the
|
36 |
-
response =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Extract and return the analysis text
|
39 |
-
analysis_text = response[0]["
|
40 |
return AnalysisResponse(analysis=analysis_text)
|
41 |
except Exception as e:
|
42 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from llama_cpp import Llama
|
4 |
+
from functools import lru_cache
|
5 |
import uvicorn
|
6 |
|
7 |
# Initialize FastAPI app
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Lazy load the Llama model
|
11 |
+
@lru_cache(maxsize=1)
|
12 |
+
def load_model():
|
13 |
+
try:
|
14 |
+
return Llama.from_pretrained(
|
15 |
+
repo_id="prithivMLmods/Llama-3.2-1B-GGUF",
|
16 |
+
filename="Llama-3.2-1B.F16.gguf"
|
17 |
+
)
|
18 |
+
except Exception as e:
|
19 |
+
raise RuntimeError(f"Failed to load model: {e}")
|
20 |
|
21 |
# Define request model for log data
|
22 |
class LogRequest(BaseModel):
|
|
|
29 |
# Define the route for security log analysis
|
30 |
@app.post("/analyze_security_logs", response_model=AnalysisResponse)
|
31 |
async def analyze_security_logs(request: LogRequest):
|
32 |
+
llm = load_model()
|
33 |
try:
|
34 |
# Security-focused prompt
|
35 |
prompt = (
|
|
|
39 |
f"{request.log_data}"
|
40 |
)
|
41 |
|
42 |
+
# Generate response from the Llama model
|
43 |
+
response = llm.create_chat_completion(
|
44 |
+
messages=[
|
45 |
+
{
|
46 |
+
"role": "user",
|
47 |
+
"content": prompt
|
48 |
+
}
|
49 |
+
]
|
50 |
+
)
|
51 |
|
52 |
# Extract and return the analysis text
|
53 |
+
analysis_text = response["choices"][0]["message"]["content"]
|
54 |
return AnalysisResponse(analysis=analysis_text)
|
55 |
except Exception as e:
|
56 |
raise HTTPException(status_code=500, detail=str(e))
|