Spaces:
Sleeping
Sleeping
Commit
·
91207a8
1
Parent(s):
8c57102
Init app
Browse files- app.py +55 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
|
6 |
+
# Initialize the FastAPI app
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load model and tokenizer once at startup
|
10 |
+
base_model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
11 |
+
peft_model_id = "LlamaFactoryAI/cv-job-description-matching"
|
12 |
+
|
13 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
15 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
16 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
17 |
+
|
18 |
+
# Define request model
|
19 |
+
class AnalysisRequest(BaseModel):
|
20 |
+
cv: str
|
21 |
+
job_description: str
|
22 |
+
|
23 |
+
@app.post("/analyze")
|
24 |
+
async def analyze(request: AnalysisRequest):
|
25 |
+
try:
|
26 |
+
# Prepare input text with formatted message
|
27 |
+
system_prompt = """
|
28 |
+
You are an advanced AI model designed to analyze the compatibility between a CV and a job description. You will receive a CV and a job description. Your task is to output a structured JSON format that includes the following:
|
29 |
+
|
30 |
+
1. matching_analysis: Analyze the CV against the job description to identify key strengths and gaps.
|
31 |
+
2. description: Summarize the relevance of the CV to the job description in a few concise sentences.
|
32 |
+
3. score: Provide a numerical compatibility score (0-100) based on qualifications, skills, and experience.
|
33 |
+
4. recommendation: Suggest actions for the candidate to improve their match or readiness for the role.
|
34 |
+
|
35 |
+
Your output must be in JSON format as follows:
|
36 |
+
{
|
37 |
+
"matching_analysis": "Your detailed analysis here.",
|
38 |
+
"description": "A brief summary here.",
|
39 |
+
"score": 85,
|
40 |
+
"recommendation": "Your suggestions here."
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
user_input = f"<CV> {request.cv} </CV>\n<job_description> {request.job_description} </job_description>"
|
44 |
+
input_text = system_prompt + user_input
|
45 |
+
|
46 |
+
# Tokenize and generate response
|
47 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
48 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
49 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
|
51 |
+
return {"analysis": generated_text}
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
raise HTTPException(status_code=500, detail=str(e))
|
55 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
transformers
|
4 |
+
peft
|
5 |
+
torch
|
6 |
+
pydantic
|
7 |
+
torchvision
|
8 |
+
torchaudio
|