cv_job / app.py
saifeddinemk's picture
Init Commit
abe3356
raw
history blame
3.23 kB
from sentence_transformers import SentenceTransformer, util
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import gradio as gr
# Load the SentenceTransformer model
model = SentenceTransformer('msmarco-distilbert-base-v4')
# Load Hugging Face NER model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
ner_model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
ner_pipeline = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
# Define function to extract entities from text using the Hugging Face NER pipeline
def extract_entities(text):
entities = {"skills": [], "experience": [], "education": []}
ner_results = ner_pipeline(text)
for entity in ner_results:
label = entity['entity_group']
if "SKILL" in label:
entities["skills"].append(entity['word'])
elif "EXPERIENCE" in label or "JOB" in label:
entities["experience"].append(entity['word'])
elif "DEGREE" in label or "EDUCATION" in label:
entities["education"].append(entity['word'])
return entities
def match_cv_to_job(cv_text, job_description):
debug_info = "Debug Info:\n"
# Extract entities from CV and job description
cv_entities = extract_entities(cv_text)
job_entities = extract_entities(job_description)
# Calculate similarity score between entities
match_score = 0
for key in cv_entities:
if key in job_entities:
match_score += len(set(cv_entities[key]) & set(job_entities[key])) / len(set(job_entities[key])) if job_entities[key] else 0
# Average score by number of categories
ner_match_score = (match_score / 3) * 100 # Normalized score for NER entities
debug_info += f"NER Match Score: {ner_match_score:.2f}%\n"
# Calculate overall similarity score using embeddings
cv_embedding = model.encode(cv_text, convert_to_tensor=True)
job_embedding = model.encode(job_description, convert_to_tensor=True)
similarity_score = util.pytorch_cos_sim(cv_embedding, job_embedding).item()
# Combine scores with weights (embedding similarity + NER matching)
combined_score = (similarity_score * 0.7) + (ner_match_score / 100) * 0.3 # Weighted combined score
match_percentage = combined_score * 100
debug_info += f"Overall Match Percentage: {match_percentage:.2f}%\n"
return {"Match Percentage": f"{match_percentage:.2f}%"}, debug_info
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# CV and Job Description Matcher with Embeddings and NER Matching")
cv_text = gr.Textbox(label="CV Text", placeholder="Enter the CV text here", lines=10)
job_description = gr.Textbox(label="Job Description", placeholder="Enter the entire job description text here", lines=10)
match_button = gr.Button("Calculate Match Percentage")
output = gr.JSON(label="Match Result")
debug_output = gr.Textbox(label="Debug Info", lines=10)
match_button.click(fn=match_cv_to_job, inputs=[cv_text, job_description], outputs=[output, debug_output])
demo.launch()