saicharan2804 commited on
Commit
aae0b32
1 Parent(s): e32ec06

some change

Browse files
Files changed (1) hide show
  1. molgenevalmetric.py +6 -2
molgenevalmetric.py CHANGED
@@ -115,7 +115,7 @@ def canonic_smiles(smiles_or_mol):
115
  return None
116
  return Chem.MolToSmiles(mol)
117
 
118
- def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
119
  """
120
  Calculates the fraction of unique molecules in a list of SMILES strings.
121
 
@@ -457,7 +457,10 @@ def qed_metric(gen):
457
 
458
  def logP_metric(gen):
459
  """
460
- Computes the average RDKit's logP value for a list of SMILES strings.
 
 
 
461
 
462
  Parameters:
463
  - gen (List[str]): List of generated SMILES strings.
@@ -488,6 +491,7 @@ def logP_metric(gen):
488
  def penalized_logp(gen):
489
  """
490
  Computes the average PyTDC's penalized logP value for a list of SMILES strings.
 
491
 
492
  Parameters:
493
  - gen (List[str]): List of generated SMILES strings.
 
115
  return None
116
  return Chem.MolToSmiles(mol)
117
 
118
+ def fraction_unique(gen, k=None, n_jobs=1, check_validity=False):
119
  """
120
  Calculates the fraction of unique molecules in a list of SMILES strings.
121
 
 
457
 
458
  def logP_metric(gen):
459
  """
460
+ Computes the average RDKit's logP value for a list of SMILES strings.
461
+ LogP is the log of the partition coefficient of a solute between octanol and water, at near infinite dilution.
462
+ It is stated that LogP should be between 0 and 5 for a small molecule drug to be a candidate for oral administration.
463
+ Computed with RDKit's Crippen (Wildman and Crippen, 1999) estimation.
464
 
465
  Parameters:
466
  - gen (List[str]): List of generated SMILES strings.
 
491
  def penalized_logp(gen):
492
  """
493
  Computes the average PyTDC's penalized logP value for a list of SMILES strings.
494
+ Captures LogP, SA and penalty for number of rings.
495
 
496
  Parameters:
497
  - gen (List[str]): List of generated SMILES strings.