Spaces:
Sleeping
Sleeping
saicharan2804
commited on
Commit
·
3c59b49
1
Parent(s):
614c0d4
Adding synthetic_complexity_score
Browse files- molgenevalmetric.py +129 -1
molgenevalmetric.py
CHANGED
@@ -38,7 +38,135 @@ import pandas as pd
|
|
38 |
from fcd_torch import FCD
|
39 |
# from syba.syba import SybaClassifier
|
40 |
|
41 |
-
from SCScore import SCScorer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
def get_mol(smiles_or_mol):
|
|
|
38 |
from fcd_torch import FCD
|
39 |
# from syba.syba import SybaClassifier
|
40 |
|
41 |
+
# from SCScore import SCScorer
|
42 |
+
|
43 |
+
import math, sys, random, os
|
44 |
+
import numpy as np
|
45 |
+
import time
|
46 |
+
import rdkit.Chem as Chem
|
47 |
+
import rdkit.Chem.AllChem as AllChem
|
48 |
+
import json
|
49 |
+
import gzip
|
50 |
+
import six
|
51 |
+
|
52 |
+
score_scale = 5.0
|
53 |
+
min_separation = 0.25
|
54 |
+
|
55 |
+
FP_len = 1024
|
56 |
+
FP_rad = 2
|
57 |
+
|
58 |
+
def sigmoid(x):
|
59 |
+
return 1 / (1 + math.exp(-x))
|
60 |
+
|
61 |
+
class SCScorer():
|
62 |
+
def __init__(self, score_scale=score_scale):
|
63 |
+
self.vars = []
|
64 |
+
self.score_scale = score_scale
|
65 |
+
self._restored = False
|
66 |
+
|
67 |
+
def restore(self, weight_path=os.path.join('model.ckpt-10654.as_numpy.json.gz'), FP_rad=FP_rad, FP_len=FP_len):
|
68 |
+
self.FP_len = FP_len; self.FP_rad = FP_rad
|
69 |
+
self._load_vars(weight_path)
|
70 |
+
# print('Restored variables from {}'.format(weight_path))
|
71 |
+
|
72 |
+
if 'uint8' in weight_path or 'counts' in weight_path:
|
73 |
+
def mol_to_fp(self, mol):
|
74 |
+
if mol is None:
|
75 |
+
return np.array((self.FP_len,), dtype=np.uint8)
|
76 |
+
fp = AllChem.GetMorganFingerprint(mol, self.FP_rad, useChirality=True) # uitnsparsevect
|
77 |
+
fp_folded = np.zeros((self.FP_len,), dtype=np.uint8)
|
78 |
+
for k, v in six.iteritems(fp.GetNonzeroElements()):
|
79 |
+
fp_folded[k % self.FP_len] += v
|
80 |
+
return np.array(fp_folded)
|
81 |
+
else:
|
82 |
+
def mol_to_fp(self, mol):
|
83 |
+
if mol is None:
|
84 |
+
return np.zeros((self.FP_len,), dtype=np.float32)
|
85 |
+
return np.array(AllChem.GetMorganFingerprintAsBitVect(mol, self.FP_rad, nBits=self.FP_len,
|
86 |
+
useChirality=True), dtype=np.bool_)
|
87 |
+
self.mol_to_fp = mol_to_fp
|
88 |
+
|
89 |
+
self._restored = True
|
90 |
+
return self
|
91 |
+
|
92 |
+
def smi_to_fp(self, smi):
|
93 |
+
if not smi:
|
94 |
+
return np.zeros((self.FP_len,), dtype=np.float32)
|
95 |
+
return self.mol_to_fp(self, Chem.MolFromSmiles(smi))
|
96 |
+
|
97 |
+
def apply(self, x):
|
98 |
+
if not self._restored:
|
99 |
+
raise ValueError('Must restore model weights!')
|
100 |
+
# Each pair of vars is a weight and bias term
|
101 |
+
for i in range(0, len(self.vars), 2):
|
102 |
+
last_layer = (i == len(self.vars)-2)
|
103 |
+
W = self.vars[i]
|
104 |
+
b = self.vars[i+1]
|
105 |
+
x = np.matmul(x, W) + b
|
106 |
+
if not last_layer:
|
107 |
+
x = x * (x > 0) # ReLU
|
108 |
+
x = 1 + (score_scale - 1) * sigmoid(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
def get_score_from_smi(self, smi='', v=False):
|
112 |
+
if not smi:
|
113 |
+
return ('', 0.)
|
114 |
+
fp = np.array((self.smi_to_fp(smi)), dtype=np.float32)
|
115 |
+
if sum(fp) == 0:
|
116 |
+
if v: print('Could not get fingerprint?')
|
117 |
+
cur_score = 0.
|
118 |
+
else:
|
119 |
+
# Run
|
120 |
+
cur_score = self.apply(fp)
|
121 |
+
if v: print('Score: {}'.format(cur_score))
|
122 |
+
mol = Chem.MolFromSmiles(smi)
|
123 |
+
if mol:
|
124 |
+
smi = Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=True)
|
125 |
+
else:
|
126 |
+
smi = ''
|
127 |
+
return (smi, cur_score)
|
128 |
+
|
129 |
+
def get_avg_score(self, smis):
|
130 |
+
"""
|
131 |
+
Compute the average score for a list of SMILES strings.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
smis (list of str): A list of SMILES strings.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
float: The average score of the given SMILES strings.
|
138 |
+
"""
|
139 |
+
if not smis: # Check if the list is empty
|
140 |
+
return 0.0
|
141 |
+
|
142 |
+
total_score = 0.0
|
143 |
+
valid_smiles_count = 0
|
144 |
+
|
145 |
+
for smi in smis:
|
146 |
+
_, score = self.get_score_from_smi(smi)
|
147 |
+
if score > 0: # Assuming only positive scores are valid
|
148 |
+
total_score += score
|
149 |
+
valid_smiles_count += 1
|
150 |
+
|
151 |
+
# Avoid division by zero
|
152 |
+
if valid_smiles_count == 0:
|
153 |
+
return 0.0
|
154 |
+
else:
|
155 |
+
return total_score / valid_smiles_count
|
156 |
+
|
157 |
+
def _load_vars(self, weight_path):
|
158 |
+
if weight_path.endswith('pickle'):
|
159 |
+
import pickle
|
160 |
+
with open(weight_path, 'rb') as fid:
|
161 |
+
self.vars = pickle.load(fid)
|
162 |
+
self.vars = [x.tolist() for x in self.vars]
|
163 |
+
elif weight_path.endswith('json.gz'):
|
164 |
+
with gzip.GzipFile(weight_path, 'r') as fin: # 4. gzip
|
165 |
+
json_bytes = fin.read() # 3. bytes (i.e. UTF-8)
|
166 |
+
json_str = json_bytes.decode('utf-8') # 2. string (i.e. JSON)
|
167 |
+
self.vars = json.loads(json_str)
|
168 |
+
self.vars = [np.array(x) for x in self.vars]
|
169 |
+
|
170 |
|
171 |
|
172 |
def get_mol(smiles_or_mol):
|