saicharan2804 commited on
Commit
2225f77
·
1 Parent(s): 024febf

Fixed error

Browse files
Files changed (3) hide show
  1. molgenevalmetric.py +4 -4
  2. scscore → scscore1 +0 -0
  3. syba_test.py +36 -34
molgenevalmetric.py CHANGED
@@ -402,13 +402,13 @@ class molgenevalmetric(evaluate.Metric):
402
  inputs_description=_KWARGS_DESCRIPTION,
403
  features=datasets.Features(
404
  {
405
- "generated_smiles": datasets.Sequence(datasets.Value("string")),
406
- "train_smiles": datasets.Sequence(datasets.Value("string")),
407
  }
408
  if self.config_name == "multilabel"
409
  else {
410
- "generated_smiles": datasets.Value("string"),
411
- "train_smiles": datasets.Value("string"),
412
  }
413
  ),
414
 
 
402
  inputs_description=_KWARGS_DESCRIPTION,
403
  features=datasets.Features(
404
  {
405
+ "gen": datasets.Sequence(datasets.Value("string")),
406
+ "train": datasets.Sequence(datasets.Value("string")),
407
  }
408
  if self.config_name == "multilabel"
409
  else {
410
+ "gen": datasets.Value("string"),
411
+ "train": datasets.Value("string"),
412
  }
413
  ),
414
 
scscore → scscore1 RENAMED
File without changes
syba_test.py CHANGED
@@ -1,34 +1,36 @@
1
- from syba.syba import SybaClassifier
2
-
3
- def SYBAscore(smiles_list):
4
- """
5
- Compute the average SYBA score for a list of SMILES strings.
6
-
7
- Parameters:
8
- - smiles_list (list of str): A list of SMILES strings representing molecules.
9
-
10
- Returns:
11
- - float: The average SYBA score for the list of molecules.
12
- """
13
- syba = SybaClassifier()
14
- syba.fitDefaultScore()
15
- scores = []
16
-
17
- for smiles in smiles_list:
18
- try:
19
- score = syba.predict(smi=smiles)
20
- scores.append(score)
21
- except Exception as e:
22
- print(f"Error processing SMILES '{smiles}': {e}")
23
- continue
24
-
25
- if scores:
26
- return sum(scores) / len(scores)
27
- else:
28
- return None # Or handle empty list or all failed predictions as needed
29
-
30
-
31
- syba = SybaClassifier()
32
- syba.fitDefaultScore()
33
- smi = "O=C(C)Oc1ccccc1C(=O)O"
34
- print(syba.predict(smi))
 
 
 
1
+ # from syba.syba import SybaClassifier
2
+
3
+ # def SYBAscore(smiles_list):
4
+ # """
5
+ # Compute the average SYBA score for a list of SMILES strings.
6
+
7
+ # Parameters:
8
+ # - smiles_list (list of str): A list of SMILES strings representing molecules.
9
+
10
+ # Returns:
11
+ # - float: The average SYBA score for the list of molecules.
12
+ # """
13
+ # syba = SybaClassifier()
14
+ # syba.fitDefaultScore()
15
+ # scores = []
16
+
17
+ # for smiles in smiles_list:
18
+ # try:
19
+ # score = syba.predict(smi=smiles)
20
+ # scores.append(score)
21
+ # except Exception as e:
22
+ # print(f"Error processing SMILES '{smiles}': {e}")
23
+ # continue
24
+
25
+ # if scores:
26
+ # return sum(scores) / len(scores)
27
+ # else:
28
+ # return None # Or handle empty list or all failed predictions as needed
29
+
30
+
31
+ # syba = SybaClassifier()
32
+ # syba.fitDefaultScore()
33
+ # smi = "O=C(C)Oc1ccccc1C(=O)O"
34
+ # print(syba.predict(smi))
35
+
36
+ import sascorer