Spaces:
Sleeping
Sleeping
saicharan2804
commited on
Commit
·
2225f77
1
Parent(s):
024febf
Fixed error
Browse files- molgenevalmetric.py +4 -4
- scscore → scscore1 +0 -0
- syba_test.py +36 -34
molgenevalmetric.py
CHANGED
@@ -402,13 +402,13 @@ class molgenevalmetric(evaluate.Metric):
|
|
402 |
inputs_description=_KWARGS_DESCRIPTION,
|
403 |
features=datasets.Features(
|
404 |
{
|
405 |
-
"
|
406 |
-
"
|
407 |
}
|
408 |
if self.config_name == "multilabel"
|
409 |
else {
|
410 |
-
"
|
411 |
-
"
|
412 |
}
|
413 |
),
|
414 |
|
|
|
402 |
inputs_description=_KWARGS_DESCRIPTION,
|
403 |
features=datasets.Features(
|
404 |
{
|
405 |
+
"gen": datasets.Sequence(datasets.Value("string")),
|
406 |
+
"train": datasets.Sequence(datasets.Value("string")),
|
407 |
}
|
408 |
if self.config_name == "multilabel"
|
409 |
else {
|
410 |
+
"gen": datasets.Value("string"),
|
411 |
+
"train": datasets.Value("string"),
|
412 |
}
|
413 |
),
|
414 |
|
scscore → scscore1
RENAMED
File without changes
|
syba_test.py
CHANGED
@@ -1,34 +1,36 @@
|
|
1 |
-
from syba.syba import SybaClassifier
|
2 |
-
|
3 |
-
def SYBAscore(smiles_list):
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
syba = SybaClassifier()
|
32 |
-
syba.fitDefaultScore()
|
33 |
-
smi = "O=C(C)Oc1ccccc1C(=O)O"
|
34 |
-
print(syba.predict(smi))
|
|
|
|
|
|
1 |
+
# from syba.syba import SybaClassifier
|
2 |
+
|
3 |
+
# def SYBAscore(smiles_list):
|
4 |
+
# """
|
5 |
+
# Compute the average SYBA score for a list of SMILES strings.
|
6 |
+
|
7 |
+
# Parameters:
|
8 |
+
# - smiles_list (list of str): A list of SMILES strings representing molecules.
|
9 |
+
|
10 |
+
# Returns:
|
11 |
+
# - float: The average SYBA score for the list of molecules.
|
12 |
+
# """
|
13 |
+
# syba = SybaClassifier()
|
14 |
+
# syba.fitDefaultScore()
|
15 |
+
# scores = []
|
16 |
+
|
17 |
+
# for smiles in smiles_list:
|
18 |
+
# try:
|
19 |
+
# score = syba.predict(smi=smiles)
|
20 |
+
# scores.append(score)
|
21 |
+
# except Exception as e:
|
22 |
+
# print(f"Error processing SMILES '{smiles}': {e}")
|
23 |
+
# continue
|
24 |
+
|
25 |
+
# if scores:
|
26 |
+
# return sum(scores) / len(scores)
|
27 |
+
# else:
|
28 |
+
# return None # Or handle empty list or all failed predictions as needed
|
29 |
+
|
30 |
+
|
31 |
+
# syba = SybaClassifier()
|
32 |
+
# syba.fitDefaultScore()
|
33 |
+
# smi = "O=C(C)Oc1ccccc1C(=O)O"
|
34 |
+
# print(syba.predict(smi))
|
35 |
+
|
36 |
+
import sascorer
|