Spaces:
Sleeping
Sleeping
# import evaluate | |
# from evaluate.utils import launch_gradio_widget | |
# import gradio as gr | |
# module = evaluate.load("saicharan2804/molgenevalmetric") | |
# # launch_gradio_widget(module) | |
# iface = gr.Interface( | |
# fn = module, | |
# inputs=[ | |
# gr.File(label="Generated SMILES"), | |
# gr.File(label="Training Data", value=None), | |
# ], | |
# outputs="text" | |
# ) | |
# iface.launch() | |
# import pandas as pd | |
# df = pd.read_csv('/home/saicharan/Downloads/chembl.csv') | |
# df = df.rename(columns={'canonical_smiles': 'SMILES'}) | |
# df = df[0:10000] | |
# print(df[['SMILES']].to_csv('/home/saicharan/Downloads/chembl_10000.csv')) | |
from scscore.scscore.standalone_model_numpy import SCScorer | |
import pandas as pd | |
model = SCScorer() | |
model.restore() | |
pubchem = pd.read_csv('/home/saicharan/Downloads/chembl_10000.csv') | |
# smis = ['CCCOCCC', 'CCCNc1ccccc1'] | |
smis = pubchem['SMILES'].tolist() | |
smis = smis[0:1000] | |
print('computing') | |
average_score = model.get_avg_score(smis) | |
# Print the average score | |
print('Average score:', average_score) | |