molgenevalmetric / molgenevalmetric.py
saicharan2804
some import changes
068a1bb
raw
history blame
18.9 kB
import evaluate
import datasets
# import moses
# from moses import metrics
import pandas as pd
# from tdc import Evaluator
# from tdc import Oracle
# from metrics import novelty, fraction_valid, fraction_unique, SAscore, internal_diversity,fcd_metric, SYBAscore, oracles
import os
from collections import Counter
from functools import partial
import numpy as np
import pandas as pd
import scipy.sparse
import torch
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MACCSkeys
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
from rdkit.Chem.QED import qed
from rdkit.Chem.Scaffolds import MurckoScaffold
from rdkit.Chem import Descriptors
import random
from multiprocessing import Pool
from collections import UserList, defaultdict
import numpy as np
import pandas as pd
from rdkit import rdBase
import sys
from rdkit.Chem import RDConfig
import os
# sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
# import sascorer
import pandas as pd
from fcd_torch import FCD
# from syba.syba import SybaClassifier
def get_mol(smiles_or_mol):
"""
Converts a SMILES string or RDKit molecule object to an RDKit molecule object.
If the input is already an RDKit molecule object, it returns it directly.
For a SMILES string, it attempts to create an RDKit molecule object.
Parameters:
- smiles_or_mol (str or Mol): The SMILES string of the molecule or an RDKit molecule object.
Returns:
- Mol or None: The RDKit molecule object or None if conversion fails.
"""
if isinstance(smiles_or_mol, str):
if len(smiles_or_mol) == 0:
return None
mol = Chem.MolFromSmiles(smiles_or_mol)
if mol is None:
return None
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
return mol
return smiles_or_mol
def mapper(n_jobs):
"""
Returns a mapping function suitable for parallel or sequential execution
based on the value of n_jobs.
Parameters:
- n_jobs (int or Pool): Number of jobs for parallel execution or a multiprocessing Pool object.
Returns:
- Function: A mapping function that can be used for applying a function over a sequence.
"""
if n_jobs == 1:
def _mapper(*args, **kwargs):
return list(map(*args, **kwargs))
return _mapper
if isinstance(n_jobs, int):
pool = Pool(n_jobs)
def _mapper(*args, **kwargs):
try:
result = pool.map(*args, **kwargs)
finally:
pool.terminate()
return result
return _mapper
return n_jobs.map
def fraction_valid(gen, n_jobs=1):
"""
Calculates the fraction of valid molecules in a list of SMILES strings.
Parameters:
- gen (list of str): List of SMILES strings.
- n_jobs (int): Number of parallel jobs to use for computation.
Returns:
- float: Fraction of valid molecules.
"""
gen = mapper(n_jobs)(get_mol, gen)
return 1 - gen.count(None) / len(gen)
def canonic_smiles(smiles_or_mol):
"""
Converts a molecule into its canonical SMILES representation.
Parameters:
- smiles_or_mol (str or Mol): SMILES string or RDKit molecule object.
Returns:
- str or None: Canonical SMILES string, or None if conversion fails.
"""
mol = get_mol(smiles_or_mol)
if mol is None:
return None
return Chem.MolToSmiles(mol)
def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
"""
Calculates the fraction of unique molecules in a list of SMILES strings.
Parameters:
- gen (list of str): List of SMILES strings.
- k (int, optional): Number of top molecules to consider for uniqueness. If None, considers all.
- n_jobs (int): Number of parallel jobs to use for computation.
- check_validity (bool): If True, checks for the validity of molecules.
Returns:
- float: Fraction of unique molecules.
"""
if k is not None:
if len(gen) < k:
warnings.warn(
"Can't compute unique@{}.".format(k) +
"gen contains only {} molecules".format(len(gen))
)
gen = gen[:k]
canonic = set(mapper(n_jobs)(canonic_smiles, gen))
if None in canonic and check_validity:
raise ValueError("Invalid molecule passed to unique@k")
return len(canonic) / len(gen)
def novelty(gen, train, n_jobs=1):
"""
Computes the novelty of generated molecules compared to a training set.
Parameters:
- gen (List[str]): List of generated SMILES strings.
- train (List[str]): List of SMILES strings from the training set.
- n_jobs (int): Number of parallel jobs to use for computation.
Returns:
- float: Novelty score.
"""
gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
gen_smiles_set = set(gen_smiles) - {None}
train_set = set(train)
return len(gen_smiles_set - train_set) / len(gen_smiles_set)
# def SAscore(gen):
# """
# Calculate the average Synthetic Accessibility Score (SAscore) for a list of molecules represented by their SMILES strings.
# Parameters:
# - smiles_list (list of str): A list containing the SMILES representations of the molecules.
# Returns:
# - float: The average Synthetic Accessibility Score for the valid molecules in the list. Returns None if no valid molecules are found.
# """
# scores = []
# for smiles in gen:
# mol = Chem.MolFromSmiles(smiles)
# if mol: # Ensures the molecule could be parsed from the SMILES string
# score = sascorer.calculateScore(mol)
# scores.append(score)
# if scores: # Checks if there are any scores calculated
# return np.mean(scores)
# else:
# return None
def average_agg_tanimoto(stock_vecs, gen_vecs,
batch_size=5000, agg='max',
device='cpu', p=1):
"""
Calculates the average aggregate Tanimoto similarity between two sets of molecule fingerprints.
Parameters:
- stock_vecs (numpy array): Fingerprint vectors for the reference molecule set.
- gen_vecs (numpy array): Fingerprint vectors for the generated molecule set.
- batch_size (int): The size of batches to process similarities (reduces memory usage).
- agg (str): Aggregation method, either 'max' or 'mean'.
- device (str): The computation device ('cpu' or 'cuda:0', etc.).
- p (float): The power for averaging, used in generalized mean calculation.
Returns:
- float: Average aggregate Tanimoto similarity score.
"""
assert agg in ['max', 'mean'], "Can aggregate only max or mean"
agg_tanimoto = np.zeros(len(gen_vecs))
total = np.zeros(len(gen_vecs))
for j in range(0, stock_vecs.shape[0], batch_size):
x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
for i in range(0, gen_vecs.shape[0], batch_size):
y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
y_gen = y_gen.transpose(0, 1)
tp = torch.mm(x_stock, y_gen)
jac = (tp / (x_stock.sum(1, keepdim=True) +
y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
jac[np.isnan(jac)] = 1
if p != 1:
jac = jac**p
if agg == 'max':
agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
elif agg == 'mean':
agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
total[i:i + y_gen.shape[1]] += jac.shape[0]
if agg == 'mean':
agg_tanimoto /= total
if p != 1:
agg_tanimoto = (agg_tanimoto)**(1/p)
return np.mean(agg_tanimoto)
def fingerprint(smiles_or_mol, fp_type='maccs', dtype=None, morgan__r=2,
morgan__n=1024, *args, **kwargs):
"""
Generates fingerprint for SMILES
If smiles is invalid, returns None
Returns numpy array of fingerprint bits
Parameters:
smiles: SMILES string
type: type of fingerprint: [MACCS|morgan]
dtype: if not None, specifies the dtype of returned array
"""
fp_type = fp_type.lower()
molecule = get_mol(smiles_or_mol, *args, **kwargs)
if molecule is None:
return None
if fp_type == 'maccs':
keys = MACCSkeys.GenMACCSKeys(molecule)
keys = np.array(keys.GetOnBits())
fingerprint = np.zeros(166, dtype='uint8')
if len(keys) != 0:
fingerprint[keys - 1] = 1 # We drop 0-th key that is always zero
elif fp_type == 'morgan':
fingerprint = np.asarray(Morgan(molecule, morgan__r, nBits=morgan__n),
dtype='uint8')
else:
raise ValueError("Unknown fingerprint type {}".format(fp_type))
if dtype is not None:
fingerprint = fingerprint.astype(dtype)
return fingerprint
def fingerprints(smiles_mols_array, n_jobs=1, already_unique=False, *args,
**kwargs):
'''
Computes fingerprints of smiles np.array/list/pd.Series with n_jobs workers
e.g.fingerprints(smiles_mols_array, type='morgan', n_jobs=10)
Inserts np.NaN to rows corresponding to incorrect smiles.
IMPORTANT: if there is at least one np.NaN, the dtype would be float
Parameters:
smiles_mols_array: list/array/pd.Series of smiles or already computed
RDKit molecules
n_jobs: number of parralel workers to execute
already_unique: flag for performance reasons, if smiles array is big
and already unique. Its value is set to True if smiles_mols_array
contain RDKit molecules already.
'''
if isinstance(smiles_mols_array, pd.Series):
smiles_mols_array = smiles_mols_array.values
else:
smiles_mols_array = np.asarray(smiles_mols_array)
if not isinstance(smiles_mols_array[0], str):
already_unique = True
if not already_unique:
smiles_mols_array, inv_index = np.unique(smiles_mols_array,
return_inverse=True)
fps = mapper(n_jobs)(
partial(fingerprint, *args, **kwargs), smiles_mols_array
)
length = 1
for fp in fps:
if fp is not None:
length = fp.shape[-1]
first_fp = fp
break
fps = [fp if fp is not None else np.array([np.NaN]).repeat(length)[None, :]
for fp in fps]
if scipy.sparse.issparse(first_fp):
fps = scipy.sparse.vstack(fps).tocsr()
else:
fps = np.vstack(fps)
if not already_unique:
return fps[inv_index]
return fps
def internal_diversity(gen, n_jobs=1, device='cpu', fp_type='morgan',
gen_fps=None, p=1):
"""
Computes internal diversity as:
1/|A|^2 sum_{x, y in AxA} (1-tanimoto(x, y))
Parameters:
- gen (List[str]): List of generated SMILES strings.
- n_jobs (int): Number of parallel jobs for fingerprint computation.
- device (str): Computation device ('cpu' or 'cuda:0', etc.).
- fp_type (str): Type of fingerprint to use ('morgan', etc.).
- gen_fps (Optional[np.ndarray]): Precomputed fingerprints of generated molecules. If None, will be computed.
Returns:
- float: Internal diversity score.
"""
if gen_fps is None:
gen_fps = fingerprints(gen, fp_type=fp_type, n_jobs=n_jobs)
return 1 - (average_agg_tanimoto(gen_fps, gen_fps,
agg='mean', device=device, p=p)).mean()
def fcd_metric(gen, train, n_jobs = 8, device = 'cuda:0'):
"""
Computes the Fréchet ChemNet Distance (FCD) between two sets of molecules.
Parameters:
- gen (List[str]): List of generated SMILES strings.
- train (List[str]): List of training set SMILES strings.
- n_jobs (int): Number of parallel jobs for computation.
- device (str): Computation device for the FCD calculation.
Returns:
- float: FCD score.
"""
fcd = FCD(device=device, n_jobs= n_jobs)
return fcd(gen, train)
# def SYBAscore(gen):
# """
# Compute the average SYBA score for a list of SMILES strings.
# Parameters:
# - smiles_list (list of str): A list of SMILES strings representing molecules.
# Returns:
# - float: The average SYBA score for the list of molecules.
# """
# syba = SybaClassifier()
# syba.fitDefaultScore()
# scores = []
# for smiles in gen:
# try:
# score = syba.predict(smi=smiles)
# scores.append(score)
# except Exception as e:
# print(f"Error processing SMILES '{smiles}': {e}")
# continue
# if scores:
# return sum(scores) / len(scores)
# else:
# return None # Or handle empty list or all failed predictions as needed
def oracles(gen, train):
"""
Computes scores from various oracles for a list of generated molecules.
Parameters:
- gen (List[str]): List of generated SMILES strings.
- train (List[str]): List of training set SMILES strings.
Returns:
- Dict[str, Any]: A dictionary with oracle names as keys and their corresponding scores as values.
"""
Result = {}
evaluator = Evaluator(name = 'KL_Divergence')
KL_Divergence = evaluator(gen, train)
Result["KL_Divergence"] = KL_Divergence
oracle_list = [
'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
'DRD2', 'LogP', 'Rediscovery', 'Similarity',
'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
]
for oracle_name in oracle_list:
oracle = Oracle(name=oracle_name)
if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
score = oracle(gen)
if isinstance(score, dict):
score = {key: sum(values)/len(values) for key, values in score.items()}
else:
score = oracle(gen)
if isinstance(score, list):
score = sum(score) / len(score)
Result[f"{oracle_name}"] = score
return Result
_DESCRIPTION = """
Comprehensive suite of metrics designed to assess the performance of molecular generation models, for understanding how well a model can produce novel, chemically valid molecules that are relevant to specific research objectives.
"""
_KWARGS_DESCRIPTION = """
Args:
generated_smiles (`list` of `string`): A collection of SMILES (Simplified Molecular Input Line Entry System) strings generated by the model, ideally encompassing more than 30,000 samples.
train_smiles (`list` of `string`): The dataset of SMILES strings used to train the model, serving as a reference to evaluate the novelty and diversity of the generated molecules.
Returns:
Dectionary item containing various metrics to evaluate model performance
"""
_CITATION = """
@article{DBLP:journals/corr/abs-1811-12823,
author = {Daniil Polykovskiy and
Alexander Zhebrak and
Benjam{\'{\i}}n S{\'{a}}nchez{-}Lengeling and
Sergey Golovanov and
Oktai Tatanov and
Stanislav Belyaev and
Rauf Kurbanov and
Aleksey Artamonov and
Vladimir Aladinskiy and
Mark Veselov and
Artur Kadurin and
Sergey I. Nikolenko and
Al{\'{a}}n Aspuru{-}Guzik and
Alex Zhavoronkov},
title = {Molecular Sets {(MOSES):} {A} Benchmarking Platform for Molecular
Generation Models},
journal = {CoRR},
volume = {abs/1811.12823},
year = {2018},
url = {http://arxiv.org/abs/1811.12823},
eprinttype = {arXiv},
eprint = {1811.12823},
timestamp = {Fri, 26 Nov 2021 15:34:30 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1811-12823.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class molgenevalmetric(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"gensmi": datasets.Sequence(datasets.Value("string")),
"trainsmi": datasets.Sequence(datasets.Value("string")),
}
if self.config_name == "multilabel"
else {
"gensmi": datasets.Value("string"),
"trainsmi": datasets.Value("string"),
}
),
reference_urls=["https://github.com/molecularsets/moses", "https://tdcommons.ai/functions/oracles/"],
)
def _compute(self, gensmi, trainsmi):
metrics = {}
metrics['novelty'] = novelty(gen = gensmi, train = trainsmi)
metrics['valid'] = fraction_valid(gen=gensmi)
metrics['unique'] = fraction_unique(gen=gensmi)
metrics['IntDiv'] = internal_diversity(gen=gensmi)
metrics['FCD'] = fcd_metric(gen = gensmi, train = trainsmi)
# metrics['Oracles'] = oracles(gen = gensmi, train = trainsmi)
# metrics['SA'] = SAscore(gen=gensmi)
# metrics['SCS'] = SAscore(gen=trainsmi)
return metrics
# generated_smiles = [s for s in generated_smiles if s != '']
# evaluator = Evaluator(name = 'KL_Divergence')
# KL_Divergence = evaluator(generated_smiles, train_smiles)
# Results.update({
# "KL_Divergence": KL_Divergence,
# })
# oracle_list = [
# 'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
# 'DRD2', 'LogP', 'Rediscovery', 'Similarity',
# 'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
# ]
# for oracle_name in oracle_list:
# oracle = Oracle(name=oracle_name)
# if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
# score = oracle(generated_smiles)
# if isinstance(score, dict):
# score = {key: sum(values)/len(values) for key, values in score.items()}
# else:
# score = oracle(generated_smiles)
# if isinstance(score, list):
# score = sum(score) / len(score)
# Results.update({f"{oracle_name}": score})
# # keys_to_remove = ["FCD/TestSF", "SNN/TestSF", "Frag/TestSF", "Scaf/TestSF"]
# # for key in keys_to_remove:
# # Results.pop(key, None)
# return {"results": Results}