File size: 19,479 Bytes
4e6d2e7
 
effa38c
0f253ff
4e6d2e7
068a1bb
 
59500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
068a1bb
024febf
59500aa
 
ab2d2e2
59500aa
614c0d4
59500aa
 
 
e57187a
 
 
 
 
 
 
 
 
 
 
 
59500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
e57187a
 
 
 
 
 
 
 
 
 
 
59500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57187a
 
59500aa
e57187a
 
 
 
 
59500aa
 
 
 
 
 
e57187a
 
 
 
 
 
 
 
 
 
59500aa
 
 
 
 
 
 
e57187a
 
59500aa
e57187a
 
 
 
 
 
 
59500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57187a
 
 
 
 
 
 
 
 
 
 
 
59500aa
 
 
 
 
 
0e78acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59500aa
0e78acb
 
 
 
59500aa
 
614c0d4
9b06241
 
 
 
 
 
 
 
 
 
614c0d4
9b06241
 
 
59500aa
 
 
 
 
e57187a
59500aa
 
e57187a
 
 
 
 
 
 
 
 
59500aa
e57187a
59500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57187a
 
 
 
 
 
 
 
 
 
 
59500aa
 
 
 
 
 
 
 
e57187a
 
 
 
 
 
 
 
 
 
 
 
 
59500aa
 
 
ab2d2e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59500aa
d3fd51f
59500aa
e57187a
 
59500aa
e57187a
 
 
 
 
 
 
 
 
7fc0b97
 
59500aa
7fc0b97
e57187a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59500aa
e57187a
 
 
59500aa
4e6d2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8da7e0
 
4e6d2e7
 
 
e8da7e0
 
4e6d2e7
 
 
 
 
 
0f253ff
 
 
 
 
 
 
 
7fc0b97
e57187a
82e9a5c
614c0d4
0f253ff
 
389f170
4e6d2e7
0f253ff
389f170
0f253ff
 
389f170
0f253ff
 
 
4e6d2e7
 
0f253ff
 
 
 
 
4e6d2e7
0f253ff
 
 
 
 
 
 
 
 
 
4e6d2e7
0f253ff
2a3cfbf
0f253ff
 
 
4e6d2e7
0f253ff
389f170
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import evaluate
import datasets
# import moses
# from moses import metrics
import pandas as pd
# from tdc import Evaluator
# from tdc import Oracle
# from metrics import novelty, fraction_valid, fraction_unique, SAscore, internal_diversity,fcd_metric, SYBAscore, oracles

import os
from collections import Counter
from functools import partial
import numpy as np
import pandas as pd
import scipy.sparse
import torch
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MACCSkeys
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
from rdkit.Chem.QED import qed
from rdkit.Chem.Scaffolds import MurckoScaffold
from rdkit.Chem import Descriptors

import random
from multiprocessing import Pool
from collections import UserList, defaultdict
import numpy as np
import pandas as pd
from rdkit import rdBase
import sys

from rdkit.Chem import RDConfig
import os
# sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
# import sascorer
import pandas as pd
from fcd_torch import FCD
# from syba.syba import SybaClassifier

from SCScore import SCScorer


def get_mol(smiles_or_mol):
    """
    Converts a SMILES string or RDKit molecule object to an RDKit molecule object.
    If the input is already an RDKit molecule object, it returns it directly.
    For a SMILES string, it attempts to create an RDKit molecule object.

    Parameters:
    - smiles_or_mol (str or Mol): The SMILES string of the molecule or an RDKit molecule object.

    Returns:
    - Mol or None: The RDKit molecule object or None if conversion fails.
    """

    if isinstance(smiles_or_mol, str):
        if len(smiles_or_mol) == 0:
            return None
        mol = Chem.MolFromSmiles(smiles_or_mol)
        if mol is None:
            return None
        try:
            Chem.SanitizeMol(mol)
        except ValueError:
            return None
        return mol
    return smiles_or_mol

def mapper(n_jobs):
    """
    Returns a mapping function suitable for parallel or sequential execution
    based on the value of n_jobs.

    Parameters:
    - n_jobs (int or Pool): Number of jobs for parallel execution or a multiprocessing Pool object.

    Returns:
    - Function: A mapping function that can be used for applying a function over a sequence.
    """

    if n_jobs == 1:
        def _mapper(*args, **kwargs):
            return list(map(*args, **kwargs))

        return _mapper
    if isinstance(n_jobs, int):
        pool = Pool(n_jobs)

        def _mapper(*args, **kwargs):
            try:
                result = pool.map(*args, **kwargs)
            finally:
                pool.terminate()
            return result

        return _mapper
    return n_jobs.map

def fraction_valid(gen, n_jobs=1):
    """
    Calculates the fraction of valid molecules in a list of SMILES strings.

    Parameters:
    - gen (list of str): List of SMILES strings.
    - n_jobs (int): Number of parallel jobs to use for computation.

    Returns:
    - float: Fraction of valid molecules.
    """
    gen = mapper(n_jobs)(get_mol, gen)
    return 1 - gen.count(None) / len(gen)


def canonic_smiles(smiles_or_mol):
    """
    Converts a molecule into its canonical SMILES representation.

    Parameters:
    - smiles_or_mol (str or Mol): SMILES string or RDKit molecule object.

    Returns:
    - str or None: Canonical SMILES string, or None if conversion fails.
    """

    mol = get_mol(smiles_or_mol)
    if mol is None:
        return None
    return Chem.MolToSmiles(mol)

def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
    """
    Calculates the fraction of unique molecules in a list of SMILES strings.

    Parameters:
    - gen (list of str): List of SMILES strings.
    - k (int, optional): Number of top molecules to consider for uniqueness. If None, considers all.
    - n_jobs (int): Number of parallel jobs to use for computation.
    - check_validity (bool): If True, checks for the validity of molecules.

    Returns:
    - float: Fraction of unique molecules.
    """
    if k is not None:
        if len(gen) < k:
            warnings.warn(
                "Can't compute unique@{}.".format(k) +
                "gen contains only {} molecules".format(len(gen))
            )
        gen = gen[:k]
    canonic = set(mapper(n_jobs)(canonic_smiles, gen))

    if None in canonic and check_validity:
        raise ValueError("Invalid molecule passed to unique@k")
    return len(canonic) / len(gen)

def novelty(gen, train, n_jobs=1):
    """
    Computes the novelty of generated molecules compared to a training set.

    Parameters:
    - gen (List[str]): List of generated SMILES strings.
    - train (List[str]): List of SMILES strings from the training set.
    - n_jobs (int): Number of parallel jobs to use for computation.

    Returns:
    - float: Novelty score.
    """

    gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
    gen_smiles_set = set(gen_smiles) - {None}
    train_set = set(train)
    return len(gen_smiles_set - train_set) / len(gen_smiles_set)


# def SAscore(gen):
#     """
#     Calculate the average Synthetic Accessibility Score (SAscore) for a list of molecules represented by their SMILES strings.

#     Parameters:
#     - smiles_list (list of str): A list containing the SMILES representations of the molecules.

#     Returns:
#     - float: The average Synthetic Accessibility Score for the valid molecules in the list. Returns None if no valid molecules are found.
#     """
#     scores = []
#     for smiles in gen:
#         mol = Chem.MolFromSmiles(smiles)
#         if mol:  # Ensures the molecule could be parsed from the SMILES string
#             score = sascorer.calculateScore(mol)
#             scores.append(score)
    
#     if scores:  # Checks if there are any scores calculated
#         return np.mean(scores)
#     else:
#         return None


def synthetic_complexity_score(gen):
    """
    Calculate the average Synthetic Complexity Score (SCScore) for a list of molecules represented by their SMILES strings.

    Parameters:
    - gen (list of str): A list containing the SMILES representations of the molecules.

    Returns:
    - float: The average Synthetic Accessibility Score for the valid molecules in the list. Returns None if no valid molecules are found.
    """

    model = SCScorer()
    average_score = model.get_avg_score(gen)
    return average_score


def average_agg_tanimoto(stock_vecs, gen_vecs,
                         batch_size=5000, agg='max',
                         device='cpu', p=1):
    """
    Calculates the average aggregate Tanimoto similarity between two sets of molecule fingerprints.

    Parameters:
    - stock_vecs (numpy array): Fingerprint vectors for the reference molecule set.
    - gen_vecs (numpy array): Fingerprint vectors for the generated molecule set.
    - batch_size (int): The size of batches to process similarities (reduces memory usage).
    - agg (str): Aggregation method, either 'max' or 'mean'.
    - device (str): The computation device ('cpu' or 'cuda:0', etc.).
    - p (float): The power for averaging, used in generalized mean calculation.

    Returns:
    - float: Average aggregate Tanimoto similarity score.
    """

    assert agg in ['max', 'mean'], "Can aggregate only max or mean"
    agg_tanimoto = np.zeros(len(gen_vecs))
    total = np.zeros(len(gen_vecs))
    for j in range(0, stock_vecs.shape[0], batch_size):
        x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
        for i in range(0, gen_vecs.shape[0], batch_size):
            y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
            y_gen = y_gen.transpose(0, 1)
            tp = torch.mm(x_stock, y_gen)
            jac = (tp / (x_stock.sum(1, keepdim=True) +
                         y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
            jac[np.isnan(jac)] = 1
            if p != 1:
                jac = jac**p
            if agg == 'max':
                agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
                    agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
            elif agg == 'mean':
                agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
                total[i:i + y_gen.shape[1]] += jac.shape[0]
    if agg == 'mean':
        agg_tanimoto /= total
    if p != 1:
        agg_tanimoto = (agg_tanimoto)**(1/p)
    return np.mean(agg_tanimoto)

def fingerprint(smiles_or_mol, fp_type='maccs', dtype=None, morgan__r=2,
                morgan__n=1024, *args, **kwargs):
    """
    Generates fingerprint for SMILES
    If smiles is invalid, returns None
    Returns numpy array of fingerprint bits

    Parameters:
        smiles: SMILES string
        type: type of fingerprint: [MACCS|morgan]
        dtype: if not None, specifies the dtype of returned array
    """
    fp_type = fp_type.lower()
    molecule = get_mol(smiles_or_mol, *args, **kwargs)
    if molecule is None:
        return None
    if fp_type == 'maccs':
        keys = MACCSkeys.GenMACCSKeys(molecule)
        keys = np.array(keys.GetOnBits())
        fingerprint = np.zeros(166, dtype='uint8')
        if len(keys) != 0:
            fingerprint[keys - 1] = 1  # We drop 0-th key that is always zero
    elif fp_type == 'morgan':
        fingerprint = np.asarray(Morgan(molecule, morgan__r, nBits=morgan__n),
                                 dtype='uint8')
    else:
        raise ValueError("Unknown fingerprint type {}".format(fp_type))
    if dtype is not None:
        fingerprint = fingerprint.astype(dtype)
    return fingerprint


def fingerprints(smiles_mols_array, n_jobs=1, already_unique=False, *args,
                 **kwargs):
    '''
    Computes fingerprints of smiles np.array/list/pd.Series with n_jobs workers
    e.g.fingerprints(smiles_mols_array, type='morgan', n_jobs=10)
    Inserts np.NaN to rows corresponding to incorrect smiles.
    IMPORTANT: if there is at least one np.NaN, the dtype would be float
    Parameters:
        smiles_mols_array: list/array/pd.Series of smiles or already computed
            RDKit molecules
        n_jobs: number of parralel workers to execute
        already_unique: flag for performance reasons, if smiles array is big
            and already unique. Its value is set to True if smiles_mols_array
            contain RDKit molecules already.
    '''
    if isinstance(smiles_mols_array, pd.Series):
        smiles_mols_array = smiles_mols_array.values
    else:
        smiles_mols_array = np.asarray(smiles_mols_array)
    if not isinstance(smiles_mols_array[0], str):
        already_unique = True

    if not already_unique:
        smiles_mols_array, inv_index = np.unique(smiles_mols_array,
                                                 return_inverse=True)

    fps = mapper(n_jobs)(
        partial(fingerprint, *args, **kwargs), smiles_mols_array
    )

    length = 1
    for fp in fps:
        if fp is not None:
            length = fp.shape[-1]
            first_fp = fp
            break
    fps = [fp if fp is not None else np.array([np.NaN]).repeat(length)[None, :]
           for fp in fps]
    if scipy.sparse.issparse(first_fp):
        fps = scipy.sparse.vstack(fps).tocsr()
    else:
        fps = np.vstack(fps)
    if not already_unique:
        return fps[inv_index]
    return fps

def internal_diversity(gen, n_jobs=1, device='cpu', fp_type='morgan',
                       gen_fps=None, p=1):
    """
    Computes internal diversity as:
    1/|A|^2 sum_{x, y in AxA} (1-tanimoto(x, y))
    
    Parameters:
    - gen (List[str]): List of generated SMILES strings.
    - n_jobs (int): Number of parallel jobs for fingerprint computation.
    - device (str): Computation device ('cpu' or 'cuda:0', etc.).
    - fp_type (str): Type of fingerprint to use ('morgan', etc.).
    - gen_fps (Optional[np.ndarray]): Precomputed fingerprints of generated molecules. If None, will be computed.

    Returns:
    - float: Internal diversity score.

    """
    if gen_fps is None:
        gen_fps = fingerprints(gen, fp_type=fp_type, n_jobs=n_jobs)
    return 1 - (average_agg_tanimoto(gen_fps, gen_fps,
                                     agg='mean', device=device, p=p)).mean()


def fcd_metric(gen, train, n_jobs = 8, device = 'cuda:0'):
    """
    Computes the Fréchet ChemNet Distance (FCD) between two sets of molecules.

    Parameters:
    - gen (List[str]): List of generated SMILES strings.
    - train (List[str]): List of training set SMILES strings.
    - n_jobs (int): Number of parallel jobs for computation.
    - device (str): Computation device for the FCD calculation.

    Returns:
    - float: FCD score.
    """

    fcd = FCD(device=device, n_jobs= n_jobs)
    return fcd(gen, train)

# def SYBAscore(gen):
#     """
#     Compute the average SYBA score for a list of SMILES strings.

#     Parameters:
#     - smiles_list (list of str): A list of SMILES strings representing molecules.

#     Returns:
#     - float: The average SYBA score for the list of molecules.
#     """
#     syba = SybaClassifier()
#     syba.fitDefaultScore()
#     scores = []

#     for smiles in gen:
#         try:
#             score = syba.predict(smi=smiles)
#             scores.append(score)
#         except Exception as e:
#             print(f"Error processing SMILES '{smiles}': {e}")
#             continue

#     if scores:
#         return sum(scores) / len(scores)
#     else:
#         return None  # Or handle empty list or all failed predictions as needed

def oracles(gen, train):

    """
    Computes scores from various oracles for a list of generated molecules.

    Parameters:
    - gen (List[str]): List of generated SMILES strings.
    - train (List[str]): List of training set SMILES strings.

    Returns:
    - Dict[str, Any]: A dictionary with oracle names as keys and their corresponding scores as values.
    """

    Result = {}
    evaluator = Evaluator(name = 'KL_Divergence')
    KL_Divergence = evaluator(gen, train)
            
    Result["KL_Divergence"] = KL_Divergence


    oracle_list = [
    'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
    'DRD2', 'LogP', 'Rediscovery', 'Similarity',
    'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
    ]

    for oracle_name in oracle_list:
        oracle = Oracle(name=oracle_name)
        if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
            score = oracle(gen)
            if isinstance(score, dict):
                score = {key: sum(values)/len(values) for key, values in score.items()}
        else:
            score = oracle(gen)
            if isinstance(score, list):
                score = sum(score) / len(score)
        
        Result[f"{oracle_name}"] = score
    
    return Result



_DESCRIPTION = """

Comprehensive suite of metrics designed to assess the performance of molecular generation models, for understanding how well a model can produce novel, chemically valid molecules that are relevant to specific research objectives.

"""


_KWARGS_DESCRIPTION = """
Args:
    generated_smiles (`list` of `string`): A collection of SMILES (Simplified Molecular Input Line Entry System) strings generated by the model, ideally encompassing more than 30,000 samples.
    train_smiles (`list` of `string`): The dataset of SMILES strings used to train the model, serving as a reference to evaluate the novelty and diversity of the generated molecules.

Returns:
    Dectionary item containing various metrics to evaluate model performance
"""


_CITATION = """
@article{DBLP:journals/corr/abs-1811-12823,
  author       = {Daniil Polykovskiy and
                  Alexander Zhebrak and
                  Benjam{\'{\i}}n S{\'{a}}nchez{-}Lengeling and
                  Sergey Golovanov and
                  Oktai Tatanov and
                  Stanislav Belyaev and
                  Rauf Kurbanov and
                  Aleksey Artamonov and
                  Vladimir Aladinskiy and
                  Mark Veselov and
                  Artur Kadurin and
                  Sergey I. Nikolenko and
                  Al{\'{a}}n Aspuru{-}Guzik and
                  Alex Zhavoronkov},
  title        = {Molecular Sets {(MOSES):} {A} Benchmarking Platform for Molecular
                  Generation Models},
  journal      = {CoRR},
  volume       = {abs/1811.12823},
  year         = {2018},
  url          = {http://arxiv.org/abs/1811.12823},
  eprinttype    = {arXiv},
  eprint       = {1811.12823},
  timestamp    = {Fri, 26 Nov 2021 15:34:30 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1811-12823.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class molgenevalmetric(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "gensmi": datasets.Sequence(datasets.Value("string")),
                    "trainsmi": datasets.Sequence(datasets.Value("string")),
                }
                if self.config_name == "multilabel"
                else {
                    "gensmi": datasets.Value("string"),
                    "trainsmi": datasets.Value("string"),
                }
            ),
                
            reference_urls=["https://github.com/molecularsets/moses", "https://tdcommons.ai/functions/oracles/"],
        )

    def _compute(self, gensmi, trainsmi):

        metrics = {}
        metrics['novelty'] = novelty(gen = gensmi, train = trainsmi)
        metrics['valid'] = fraction_valid(gen=gensmi)
        metrics['unique'] = fraction_unique(gen=gensmi)
        metrics['IntDiv'] = internal_diversity(gen=gensmi)
        metrics['FCD'] = fcd_metric(gen = gensmi, train = trainsmi)
        # metrics['Oracles'] = oracles(gen = gensmi, train = trainsmi)

        # metrics['SA'] = SAscore(gen=gensmi)
        metrics['SCS'] = synthetic_complexity_score(gen=gensmi)

        return metrics

        
        # generated_smiles = [s for s in generated_smiles if s != '']

        # evaluator = Evaluator(name = 'KL_Divergence')
        # KL_Divergence = evaluator(generated_smiles, train_smiles)
                
        # Results.update({
        #     "KL_Divergence": KL_Divergence,
        # })


        # oracle_list = [
        # 'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
        # 'DRD2', 'LogP', 'Rediscovery', 'Similarity',
        # 'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
        # ]
    
        # for oracle_name in oracle_list:
        #     oracle = Oracle(name=oracle_name)
        #     if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
        #         score = oracle(generated_smiles)
        #         if isinstance(score, dict):
        #             score = {key: sum(values)/len(values) for key, values in score.items()}
        #     else:
        #         score = oracle(generated_smiles)
        #         if isinstance(score, list):
        #             score = sum(score) / len(score)
            
        #     Results.update({f"{oracle_name}": score})

        # # keys_to_remove = ["FCD/TestSF", "SNN/TestSF", "Frag/TestSF", "Scaf/TestSF"]
        # # for key in keys_to_remove:
        # #     Results.pop(key, None)    

        # return {"results": Results}