Spaces:
Sleeping
Sleeping
File size: 19,479 Bytes
4e6d2e7 effa38c 0f253ff 4e6d2e7 068a1bb 59500aa 068a1bb 024febf 59500aa ab2d2e2 59500aa 614c0d4 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa 0e78acb 59500aa 0e78acb 59500aa 614c0d4 9b06241 614c0d4 9b06241 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa e57187a 59500aa ab2d2e2 59500aa d3fd51f 59500aa e57187a 59500aa e57187a 7fc0b97 59500aa 7fc0b97 e57187a 59500aa e57187a 59500aa 4e6d2e7 e8da7e0 4e6d2e7 e8da7e0 4e6d2e7 0f253ff 7fc0b97 e57187a 82e9a5c 614c0d4 0f253ff 389f170 4e6d2e7 0f253ff 389f170 0f253ff 389f170 0f253ff 4e6d2e7 0f253ff 4e6d2e7 0f253ff 4e6d2e7 0f253ff 2a3cfbf 0f253ff 4e6d2e7 0f253ff 389f170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import evaluate
import datasets
# import moses
# from moses import metrics
import pandas as pd
# from tdc import Evaluator
# from tdc import Oracle
# from metrics import novelty, fraction_valid, fraction_unique, SAscore, internal_diversity,fcd_metric, SYBAscore, oracles
import os
from collections import Counter
from functools import partial
import numpy as np
import pandas as pd
import scipy.sparse
import torch
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MACCSkeys
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
from rdkit.Chem.QED import qed
from rdkit.Chem.Scaffolds import MurckoScaffold
from rdkit.Chem import Descriptors
import random
from multiprocessing import Pool
from collections import UserList, defaultdict
import numpy as np
import pandas as pd
from rdkit import rdBase
import sys
from rdkit.Chem import RDConfig
import os
# sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
# import sascorer
import pandas as pd
from fcd_torch import FCD
# from syba.syba import SybaClassifier
from SCScore import SCScorer
def get_mol(smiles_or_mol):
"""
Converts a SMILES string or RDKit molecule object to an RDKit molecule object.
If the input is already an RDKit molecule object, it returns it directly.
For a SMILES string, it attempts to create an RDKit molecule object.
Parameters:
- smiles_or_mol (str or Mol): The SMILES string of the molecule or an RDKit molecule object.
Returns:
- Mol or None: The RDKit molecule object or None if conversion fails.
"""
if isinstance(smiles_or_mol, str):
if len(smiles_or_mol) == 0:
return None
mol = Chem.MolFromSmiles(smiles_or_mol)
if mol is None:
return None
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
return mol
return smiles_or_mol
def mapper(n_jobs):
"""
Returns a mapping function suitable for parallel or sequential execution
based on the value of n_jobs.
Parameters:
- n_jobs (int or Pool): Number of jobs for parallel execution or a multiprocessing Pool object.
Returns:
- Function: A mapping function that can be used for applying a function over a sequence.
"""
if n_jobs == 1:
def _mapper(*args, **kwargs):
return list(map(*args, **kwargs))
return _mapper
if isinstance(n_jobs, int):
pool = Pool(n_jobs)
def _mapper(*args, **kwargs):
try:
result = pool.map(*args, **kwargs)
finally:
pool.terminate()
return result
return _mapper
return n_jobs.map
def fraction_valid(gen, n_jobs=1):
"""
Calculates the fraction of valid molecules in a list of SMILES strings.
Parameters:
- gen (list of str): List of SMILES strings.
- n_jobs (int): Number of parallel jobs to use for computation.
Returns:
- float: Fraction of valid molecules.
"""
gen = mapper(n_jobs)(get_mol, gen)
return 1 - gen.count(None) / len(gen)
def canonic_smiles(smiles_or_mol):
"""
Converts a molecule into its canonical SMILES representation.
Parameters:
- smiles_or_mol (str or Mol): SMILES string or RDKit molecule object.
Returns:
- str or None: Canonical SMILES string, or None if conversion fails.
"""
mol = get_mol(smiles_or_mol)
if mol is None:
return None
return Chem.MolToSmiles(mol)
def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
"""
Calculates the fraction of unique molecules in a list of SMILES strings.
Parameters:
- gen (list of str): List of SMILES strings.
- k (int, optional): Number of top molecules to consider for uniqueness. If None, considers all.
- n_jobs (int): Number of parallel jobs to use for computation.
- check_validity (bool): If True, checks for the validity of molecules.
Returns:
- float: Fraction of unique molecules.
"""
if k is not None:
if len(gen) < k:
warnings.warn(
"Can't compute unique@{}.".format(k) +
"gen contains only {} molecules".format(len(gen))
)
gen = gen[:k]
canonic = set(mapper(n_jobs)(canonic_smiles, gen))
if None in canonic and check_validity:
raise ValueError("Invalid molecule passed to unique@k")
return len(canonic) / len(gen)
def novelty(gen, train, n_jobs=1):
"""
Computes the novelty of generated molecules compared to a training set.
Parameters:
- gen (List[str]): List of generated SMILES strings.
- train (List[str]): List of SMILES strings from the training set.
- n_jobs (int): Number of parallel jobs to use for computation.
Returns:
- float: Novelty score.
"""
gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
gen_smiles_set = set(gen_smiles) - {None}
train_set = set(train)
return len(gen_smiles_set - train_set) / len(gen_smiles_set)
# def SAscore(gen):
# """
# Calculate the average Synthetic Accessibility Score (SAscore) for a list of molecules represented by their SMILES strings.
# Parameters:
# - smiles_list (list of str): A list containing the SMILES representations of the molecules.
# Returns:
# - float: The average Synthetic Accessibility Score for the valid molecules in the list. Returns None if no valid molecules are found.
# """
# scores = []
# for smiles in gen:
# mol = Chem.MolFromSmiles(smiles)
# if mol: # Ensures the molecule could be parsed from the SMILES string
# score = sascorer.calculateScore(mol)
# scores.append(score)
# if scores: # Checks if there are any scores calculated
# return np.mean(scores)
# else:
# return None
def synthetic_complexity_score(gen):
"""
Calculate the average Synthetic Complexity Score (SCScore) for a list of molecules represented by their SMILES strings.
Parameters:
- gen (list of str): A list containing the SMILES representations of the molecules.
Returns:
- float: The average Synthetic Accessibility Score for the valid molecules in the list. Returns None if no valid molecules are found.
"""
model = SCScorer()
average_score = model.get_avg_score(gen)
return average_score
def average_agg_tanimoto(stock_vecs, gen_vecs,
batch_size=5000, agg='max',
device='cpu', p=1):
"""
Calculates the average aggregate Tanimoto similarity between two sets of molecule fingerprints.
Parameters:
- stock_vecs (numpy array): Fingerprint vectors for the reference molecule set.
- gen_vecs (numpy array): Fingerprint vectors for the generated molecule set.
- batch_size (int): The size of batches to process similarities (reduces memory usage).
- agg (str): Aggregation method, either 'max' or 'mean'.
- device (str): The computation device ('cpu' or 'cuda:0', etc.).
- p (float): The power for averaging, used in generalized mean calculation.
Returns:
- float: Average aggregate Tanimoto similarity score.
"""
assert agg in ['max', 'mean'], "Can aggregate only max or mean"
agg_tanimoto = np.zeros(len(gen_vecs))
total = np.zeros(len(gen_vecs))
for j in range(0, stock_vecs.shape[0], batch_size):
x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
for i in range(0, gen_vecs.shape[0], batch_size):
y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
y_gen = y_gen.transpose(0, 1)
tp = torch.mm(x_stock, y_gen)
jac = (tp / (x_stock.sum(1, keepdim=True) +
y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
jac[np.isnan(jac)] = 1
if p != 1:
jac = jac**p
if agg == 'max':
agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
elif agg == 'mean':
agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
total[i:i + y_gen.shape[1]] += jac.shape[0]
if agg == 'mean':
agg_tanimoto /= total
if p != 1:
agg_tanimoto = (agg_tanimoto)**(1/p)
return np.mean(agg_tanimoto)
def fingerprint(smiles_or_mol, fp_type='maccs', dtype=None, morgan__r=2,
morgan__n=1024, *args, **kwargs):
"""
Generates fingerprint for SMILES
If smiles is invalid, returns None
Returns numpy array of fingerprint bits
Parameters:
smiles: SMILES string
type: type of fingerprint: [MACCS|morgan]
dtype: if not None, specifies the dtype of returned array
"""
fp_type = fp_type.lower()
molecule = get_mol(smiles_or_mol, *args, **kwargs)
if molecule is None:
return None
if fp_type == 'maccs':
keys = MACCSkeys.GenMACCSKeys(molecule)
keys = np.array(keys.GetOnBits())
fingerprint = np.zeros(166, dtype='uint8')
if len(keys) != 0:
fingerprint[keys - 1] = 1 # We drop 0-th key that is always zero
elif fp_type == 'morgan':
fingerprint = np.asarray(Morgan(molecule, morgan__r, nBits=morgan__n),
dtype='uint8')
else:
raise ValueError("Unknown fingerprint type {}".format(fp_type))
if dtype is not None:
fingerprint = fingerprint.astype(dtype)
return fingerprint
def fingerprints(smiles_mols_array, n_jobs=1, already_unique=False, *args,
**kwargs):
'''
Computes fingerprints of smiles np.array/list/pd.Series with n_jobs workers
e.g.fingerprints(smiles_mols_array, type='morgan', n_jobs=10)
Inserts np.NaN to rows corresponding to incorrect smiles.
IMPORTANT: if there is at least one np.NaN, the dtype would be float
Parameters:
smiles_mols_array: list/array/pd.Series of smiles or already computed
RDKit molecules
n_jobs: number of parralel workers to execute
already_unique: flag for performance reasons, if smiles array is big
and already unique. Its value is set to True if smiles_mols_array
contain RDKit molecules already.
'''
if isinstance(smiles_mols_array, pd.Series):
smiles_mols_array = smiles_mols_array.values
else:
smiles_mols_array = np.asarray(smiles_mols_array)
if not isinstance(smiles_mols_array[0], str):
already_unique = True
if not already_unique:
smiles_mols_array, inv_index = np.unique(smiles_mols_array,
return_inverse=True)
fps = mapper(n_jobs)(
partial(fingerprint, *args, **kwargs), smiles_mols_array
)
length = 1
for fp in fps:
if fp is not None:
length = fp.shape[-1]
first_fp = fp
break
fps = [fp if fp is not None else np.array([np.NaN]).repeat(length)[None, :]
for fp in fps]
if scipy.sparse.issparse(first_fp):
fps = scipy.sparse.vstack(fps).tocsr()
else:
fps = np.vstack(fps)
if not already_unique:
return fps[inv_index]
return fps
def internal_diversity(gen, n_jobs=1, device='cpu', fp_type='morgan',
gen_fps=None, p=1):
"""
Computes internal diversity as:
1/|A|^2 sum_{x, y in AxA} (1-tanimoto(x, y))
Parameters:
- gen (List[str]): List of generated SMILES strings.
- n_jobs (int): Number of parallel jobs for fingerprint computation.
- device (str): Computation device ('cpu' or 'cuda:0', etc.).
- fp_type (str): Type of fingerprint to use ('morgan', etc.).
- gen_fps (Optional[np.ndarray]): Precomputed fingerprints of generated molecules. If None, will be computed.
Returns:
- float: Internal diversity score.
"""
if gen_fps is None:
gen_fps = fingerprints(gen, fp_type=fp_type, n_jobs=n_jobs)
return 1 - (average_agg_tanimoto(gen_fps, gen_fps,
agg='mean', device=device, p=p)).mean()
def fcd_metric(gen, train, n_jobs = 8, device = 'cuda:0'):
"""
Computes the Fréchet ChemNet Distance (FCD) between two sets of molecules.
Parameters:
- gen (List[str]): List of generated SMILES strings.
- train (List[str]): List of training set SMILES strings.
- n_jobs (int): Number of parallel jobs for computation.
- device (str): Computation device for the FCD calculation.
Returns:
- float: FCD score.
"""
fcd = FCD(device=device, n_jobs= n_jobs)
return fcd(gen, train)
# def SYBAscore(gen):
# """
# Compute the average SYBA score for a list of SMILES strings.
# Parameters:
# - smiles_list (list of str): A list of SMILES strings representing molecules.
# Returns:
# - float: The average SYBA score for the list of molecules.
# """
# syba = SybaClassifier()
# syba.fitDefaultScore()
# scores = []
# for smiles in gen:
# try:
# score = syba.predict(smi=smiles)
# scores.append(score)
# except Exception as e:
# print(f"Error processing SMILES '{smiles}': {e}")
# continue
# if scores:
# return sum(scores) / len(scores)
# else:
# return None # Or handle empty list or all failed predictions as needed
def oracles(gen, train):
"""
Computes scores from various oracles for a list of generated molecules.
Parameters:
- gen (List[str]): List of generated SMILES strings.
- train (List[str]): List of training set SMILES strings.
Returns:
- Dict[str, Any]: A dictionary with oracle names as keys and their corresponding scores as values.
"""
Result = {}
evaluator = Evaluator(name = 'KL_Divergence')
KL_Divergence = evaluator(gen, train)
Result["KL_Divergence"] = KL_Divergence
oracle_list = [
'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
'DRD2', 'LogP', 'Rediscovery', 'Similarity',
'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
]
for oracle_name in oracle_list:
oracle = Oracle(name=oracle_name)
if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
score = oracle(gen)
if isinstance(score, dict):
score = {key: sum(values)/len(values) for key, values in score.items()}
else:
score = oracle(gen)
if isinstance(score, list):
score = sum(score) / len(score)
Result[f"{oracle_name}"] = score
return Result
_DESCRIPTION = """
Comprehensive suite of metrics designed to assess the performance of molecular generation models, for understanding how well a model can produce novel, chemically valid molecules that are relevant to specific research objectives.
"""
_KWARGS_DESCRIPTION = """
Args:
generated_smiles (`list` of `string`): A collection of SMILES (Simplified Molecular Input Line Entry System) strings generated by the model, ideally encompassing more than 30,000 samples.
train_smiles (`list` of `string`): The dataset of SMILES strings used to train the model, serving as a reference to evaluate the novelty and diversity of the generated molecules.
Returns:
Dectionary item containing various metrics to evaluate model performance
"""
_CITATION = """
@article{DBLP:journals/corr/abs-1811-12823,
author = {Daniil Polykovskiy and
Alexander Zhebrak and
Benjam{\'{\i}}n S{\'{a}}nchez{-}Lengeling and
Sergey Golovanov and
Oktai Tatanov and
Stanislav Belyaev and
Rauf Kurbanov and
Aleksey Artamonov and
Vladimir Aladinskiy and
Mark Veselov and
Artur Kadurin and
Sergey I. Nikolenko and
Al{\'{a}}n Aspuru{-}Guzik and
Alex Zhavoronkov},
title = {Molecular Sets {(MOSES):} {A} Benchmarking Platform for Molecular
Generation Models},
journal = {CoRR},
volume = {abs/1811.12823},
year = {2018},
url = {http://arxiv.org/abs/1811.12823},
eprinttype = {arXiv},
eprint = {1811.12823},
timestamp = {Fri, 26 Nov 2021 15:34:30 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1811-12823.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class molgenevalmetric(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"gensmi": datasets.Sequence(datasets.Value("string")),
"trainsmi": datasets.Sequence(datasets.Value("string")),
}
if self.config_name == "multilabel"
else {
"gensmi": datasets.Value("string"),
"trainsmi": datasets.Value("string"),
}
),
reference_urls=["https://github.com/molecularsets/moses", "https://tdcommons.ai/functions/oracles/"],
)
def _compute(self, gensmi, trainsmi):
metrics = {}
metrics['novelty'] = novelty(gen = gensmi, train = trainsmi)
metrics['valid'] = fraction_valid(gen=gensmi)
metrics['unique'] = fraction_unique(gen=gensmi)
metrics['IntDiv'] = internal_diversity(gen=gensmi)
metrics['FCD'] = fcd_metric(gen = gensmi, train = trainsmi)
# metrics['Oracles'] = oracles(gen = gensmi, train = trainsmi)
# metrics['SA'] = SAscore(gen=gensmi)
metrics['SCS'] = synthetic_complexity_score(gen=gensmi)
return metrics
# generated_smiles = [s for s in generated_smiles if s != '']
# evaluator = Evaluator(name = 'KL_Divergence')
# KL_Divergence = evaluator(generated_smiles, train_smiles)
# Results.update({
# "KL_Divergence": KL_Divergence,
# })
# oracle_list = [
# 'QED', 'SA', 'MPO', 'GSK3B', 'JNK3',
# 'DRD2', 'LogP', 'Rediscovery', 'Similarity',
# 'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop'
# ]
# for oracle_name in oracle_list:
# oracle = Oracle(name=oracle_name)
# if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']:
# score = oracle(generated_smiles)
# if isinstance(score, dict):
# score = {key: sum(values)/len(values) for key, values in score.items()}
# else:
# score = oracle(generated_smiles)
# if isinstance(score, list):
# score = sum(score) / len(score)
# Results.update({f"{oracle_name}": score})
# # keys_to_remove = ["FCD/TestSF", "SNN/TestSF", "Frag/TestSF", "Scaf/TestSF"]
# # for key in keys_to_remove:
# # Results.pop(key, None)
# return {"results": Results}
|