Spaces:
Sleeping
Sleeping
File size: 1,046 Bytes
9b06241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
# import evaluate
# from evaluate.utils import launch_gradio_widget
# import gradio as gr
# module = evaluate.load("saicharan2804/molgenevalmetric")
# # launch_gradio_widget(module)
# iface = gr.Interface(
# fn = module,
# inputs=[
# gr.File(label="Generated SMILES"),
# gr.File(label="Training Data", value=None),
# ],
# outputs="text"
# )
# iface.launch()
# import pandas as pd
# df = pd.read_csv('/home/saicharan/Downloads/chembl.csv')
# df = df.rename(columns={'canonical_smiles': 'SMILES'})
# df = df[0:10000]
# print(df[['SMILES']].to_csv('/home/saicharan/Downloads/chembl_10000.csv'))
from scscore.scscore.standalone_model_numpy import SCScorer
import pandas as pd
model = SCScorer()
model.restore()
pubchem = pd.read_csv('/home/saicharan/Downloads/chembl_10000.csv')
# smis = ['CCCOCCC', 'CCCNc1ccccc1']
smis = pubchem['SMILES'].tolist()
smis = smis[0:1000]
print('computing')
average_score = model.get_avg_score(smis)
# Print the average score
print('Average score:', average_score)
|