File size: 6,469 Bytes
c36a10c
 
 
 
 
 
 
 
 
 
 
 
 
 
9b06241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c430f
9b06241
e8c430f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36a10c
 
9b06241
c36a10c
 
 
 
9b06241
c36a10c
9b06241
c36a10c
 
 
e8c430f
c36a10c
 
9b06241
c36a10c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pandas as pd
df = pd.read_csv('/Users/saicharan/chembl_10000.csv')

import evaluate
molgenevalmetric = evaluate.load("saicharan2804/molgenevalmetric")

ls= df['SMILES'].tolist()
ls_gen = ls[0:5000]
ls_train = ls[5000:10000]

print('computing')

print(molgenevalmetric.compute(gensmi = ls_gen, trainsmi = ls_train))

# import evaluate
# from evaluate.utils import launch_gradio_widget
# import gradio as gr

# module = evaluate.load("saicharan2804/molgenevalmetric")
# # launch_gradio_widget(module)

# iface = gr.Interface(
#     fn = module,
#     inputs=[
#         gr.File(label="Generated SMILES"), 
#         gr.File(label="Training Data", value=None),
#         ],
#     outputs="text"
# )

# iface.launch()

# import pandas as pd

# df = pd.read_csv('/home/saicharan/Downloads/chembl.csv')

# df = df.rename(columns={'canonical_smiles': 'SMILES'})

# df = df[0:10000]

# print(df[['SMILES']].to_csv('/home/saicharan/Downloads/chembl_10000.csv'))
# from SCScore import SCScorer


# '''
# This is a standalone, importable SCScorer model. It does not have tensorflow as a
# dependency and is a more attractive option for deployment. The calculations are
# fast enough that there is no real reason to use GPUs (via tf) instead of CPUs (via np)
# '''

# import numpy as np
# import time
# import rdkit.Chem as Chem
# import rdkit.Chem.AllChem as AllChem
# import json
# import gzip
# import six

# import os
# project_root = os.path.dirname(os.path.dirname(__file__))

# score_scale = 5.0
# min_separation = 0.25

# FP_len = 1024
# FP_rad = 2

# def sigmoid(x):
#   return 1 / (1 + np.exp(-x))

# class SCScorer():
#     def __init__(self, score_scale=score_scale):
#         self.vars = []
#         self.score_scale = score_scale
#         self._restored = False

#     def restore(self, weight_path=os.path.join('model.ckpt-10654.as_numpy.json.gz'), FP_rad=FP_rad, FP_len=FP_len):
#         self.FP_len = FP_len; self.FP_rad = FP_rad
#         self._load_vars(weight_path)
#         # print('Restored variables from {}'.format(weight_path))

#         if 'uint8' in weight_path or 'counts' in weight_path:
#             def mol_to_fp(self, mol):
#                 if mol is None:
#                     return np.array((self.FP_len,), dtype=np.uint8)
#                 fp = AllChem.GetMorganFingerprint(mol, self.FP_rad, useChirality=True) # uitnsparsevect
#                 fp_folded = np.zeros((self.FP_len,), dtype=np.uint8)
#                 for k, v in six.iteritems(fp.GetNonzeroElements()):
#                     fp_folded[k % self.FP_len] += v
#                 return np.array(fp_folded)
#         else:
#             def mol_to_fp(self, mol):
#                 if mol is None:
#                     return np.zeros((self.FP_len,), dtype=np.float32)
#                 return np.array(AllChem.GetMorganFingerprintAsBitVect(mol, self.FP_rad, nBits=self.FP_len,
#                     useChirality=True), dtype=np.bool_)
#         self.mol_to_fp = mol_to_fp

#         self._restored = True
#         return self

#     def smi_to_fp(self, smi):
#         if not smi:
#             return np.zeros((self.FP_len,), dtype=np.float32)
#         return self.mol_to_fp(self, Chem.MolFromSmiles(smi))

#     def apply(self, x):
#         if not self._restored:
#             raise ValueError('Must restore model weights!')
#         # Each pair of vars is a weight and bias term
#         for i in range(0, len(self.vars), 2):
#             last_layer = (i == len(self.vars)-2)
#             W = self.vars[i]
#             b = self.vars[i+1]
#             x = np.matmul(x, W) + b
#             if not last_layer:
#                 x = x * (x > 0) # ReLU
#         x = 1 + (score_scale - 1) * sigmoid(x)
#         return x

#     def get_score_from_smi(self, smi='', v=False):
#         if not smi:
#             return ('', 0.)
#         fp = np.array((self.smi_to_fp(smi)), dtype=np.float32)
#         if sum(fp) == 0:
#             if v: print('Could not get fingerprint?')
#             cur_score = 0.
#         else:
#             # Run
#             cur_score = self.apply(fp)
#             if v: print('Score: {}'.format(cur_score))
#         mol = Chem.MolFromSmiles(smi)
#         if mol:
#             smi = Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=True)
#         else:
#             smi = ''
#         return (smi, cur_score)
    
#     def get_avg_score(self, smis):
#         """
#         Compute the average score for a list of SMILES strings.

#         Args:
#             smis (list of str): A list of SMILES strings.

#         Returns:
#             float: The average score of the given SMILES strings.
#         """
#         if not smis:  # Check if the list is empty
#             return 0.0
        
#         total_score = 0.0
#         valid_smiles_count = 0
        
#         for smi in smis:
#             _, score = self.get_score_from_smi(smi)
#             if score > 0:  # Assuming only positive scores are valid
#                 total_score += score
#                 valid_smiles_count += 1

#         # Avoid division by zero
#         if valid_smiles_count == 0:
#             return 0.0
#         else:
#             return total_score / valid_smiles_count

#     def _load_vars(self, weight_path):
#         if weight_path.endswith('pickle'):
#             import pickle
#             with open(weight_path, 'rb') as fid:
#                 self.vars = pickle.load(fid)
#                 self.vars = [x.tolist() for x in self.vars]
#         elif weight_path.endswith('json.gz'):
#             with gzip.GzipFile(weight_path, 'r') as fin:    # 4. gzip
#                 json_bytes = fin.read()                      # 3. bytes (i.e. UTF-8)
#                 json_str = json_bytes.decode('utf-8')            # 2. string (i.e. JSON)
#                 self.vars = json.loads(json_str)
#                 self.vars = [np.array(x) for x in self.vars]





# from myscscore.SCScore import SCScorer
# import pandas as pd

# model = SCScorer()
# model.restore()
# # import evaluate
# # molgenevalmetric = evaluate.load("saicharan2804/molgenevalmetric")

# df = pd.read_csv('/home/saicharan/Downloads/chembl_10000.csv')
    
# ls= df['SMILES'].tolist()
# ls_gen = ls[0:5000]
# ls_train = ls[5000:10000]

# print('computing')
# average_score = model.get_avg_score(ls_gen)

# # Print the average score
# print('Average score:', average_score)
# # print(molgenevalmetric.compute(gensmi = ls_gen, trainsmi = ls_train))