Spaces:
Runtime error
Runtime error
File size: 5,985 Bytes
04491d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import sys
import os.path as osp
from pathlib import Path
import cv2
import gradio as gr
import torch
import math
import spaces
from huggingface_hub import hf_hub_download
try:
import mmpose
except:
try:
os.system('pip install ./main/transformer_utils')
except:
raise ImportError("Please install mmpose library from the transformer_utils folder")
# hf_hub_download(repo_id="caizhongang/SMPLer-X", filename="smpler_x_h32.pth.tar", local_dir="/home/user/app/pretrained_models")
# os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
DEFAULT_MODEL='smpler_x_h32'
OUT_FOLDER = 'output'
os.makedirs(OUT_FOLDER, exist_ok=True)
num_gpus = 1 if torch.cuda.is_available() else -1
print("!!!", torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.version.cuda)
index = torch.cuda.current_device()
print(index)
print(torch.cuda.get_device_name(index))
from main.inference import Inferer
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
@spaces.GPU(enable_queue=True, duration=300)
def infer(video_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
# from main.inference import Inferer
# inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
os.system(f'rm -rf {OUT_FOLDER}/*')
multi_person = False if (num_people == "Single person") else True
cap = cv2.VideoCapture(video_input)
fps = math.ceil(cap.get(5))
width = int(cap.get(3))
height = int(cap.get(4))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_path = osp.join(OUT_FOLDER, f'out.m4v')
final_video_path = osp.join(OUT_FOLDER, f'out.mp4')
video_output = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
success = 1
frame = 0
while success:
success, original_img = cap.read()
if not success:
break
frame += 1
img, mesh_paths, smplx_paths = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
video_output.write(img)
yield img, None, None, None
cap.release()
video_output.release()
cv2.destroyAllWindows()
os.system(f'ffmpeg -i {video_path} -c copy {final_video_path}')
#Compress mesh and smplx files
save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
os.makedirs(save_path_mesh, exist_ok= True)
save_path_smplx = os.path.join(OUT_FOLDER, 'smplx')
save_smplx_file = os.path.join(OUT_FOLDER, 'smplx.zip')
os.makedirs(save_path_smplx, exist_ok= True)
os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
yield img, video_path, save_mesh_file, save_smplx_file
TITLE = '''<h1 align="center">SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</h1>'''
VIDEO = '''
<center><iframe width="960" height="540"
src="https://www.youtube.com/embed/DepTqbPpVzY?si=qSeQuX-bgm_rON7E"title="SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen>
</iframe>
</center><br>'''
DESCRIPTION = '''
<b>Official Gradio demo</b> for <a href="https://caizhongang.com/projects/SMPLer-X/"><b>SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation</b></a>.<br>
<p>
Note: You can drop a video at the panel (or select one of the examples)
to obtain the 3D parametric reconstructions of the detected humans.
</p>
'''
with gr.Blocks(title="SMPLer-X", css=".gradio-container") as demo:
gr.Markdown(TITLE)
gr.HTML(VIDEO)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Input video", elem_classes="video")
threshold = gr.Slider(0, 1.0, value=0.5, label='BBox detection threshold')
with gr.Column(scale=2):
num_people = gr.Radio(
choices=["Single person", "Multiple people"],
value="Single person",
label="Number of people",
info="Choose how many people are there in the video. Choose 'single person' for faster inference.",
interactive=True,
scale=1,)
gr.HTML("""<br/>""")
mesh_as_vertices = gr.Checkbox(
label="Render as mesh",
info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
interactive=True,
scale=1,)
send_button = gr.Button("Infer")
gr.HTML("""<br/>""")
with gr.Row():
with gr.Column():
processed_frames = gr.Image(label="Last processed frame")
video_output = gr.Video(elem_classes="video")
with gr.Column():
meshes_output = gr.File(label="3D meshes")
smplx_output = gr.File(label= "SMPL-X models")
# example_images = gr.Examples([])
send_button.click(fn=infer, inputs=[video_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, video_output, meshes_output, smplx_output])
# with gr.Row():
example_videos = gr.Examples([
['/home/user/app/assets/01.mp4'],
['/home/user/app/assets/02.mp4'],
['/home/user/app/assets/03.mp4'],
['/home/user/app/assets/04.mp4'],
['/home/user/app/assets/05.mp4'],
['/home/user/app/assets/06.mp4'],
['/home/user/app/assets/07.mp4'],
['/home/user/app/assets/08.mp4'],
['/home/user/app/assets/09.mp4'],
],
inputs=[video_input, 0.5])
#demo.queue()
demo.queue().launch(debug=True)
|