sahandkh1419 commited on
Commit
efc446d
1 Parent(s): f42c616

Create functions.py

Browse files
Files changed (1) hide show
  1. functions.py +95 -0
functions.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import whisper
2
+ from sklearn.feature_extraction.text import TfidfVectorizer
3
+ from sklearn.metrics.pairwise import cosine_similarity
4
+ from pydub import AudioSegment
5
+ from hezar.models import Model
6
+ import librosa
7
+ import soundfile as sf
8
+ from audio_separator.separator import Separator
9
+ from logging import ERROR
10
+ import streamlit as st
11
+
12
+
13
+ def cosine_sim(text1, text2):
14
+ vectorizer = TfidfVectorizer().fit_transform([text1, text2])
15
+ vectors = vectorizer.toarray()
16
+ return cosine_similarity(vectors)[0, 1]
17
+
18
+ def take_challenge(music_file, typed_lyrics, key, language, has_background=False, background_audio_path=None):
19
+ st.write("Listen to music since you have to record 15seconds after that")
20
+ st.audio(music_file)
21
+ if has_background:
22
+ st.write("Play this music while singing which might help you:")
23
+ st.audio(background_audio_path)
24
+ audio_value = st.experimental_audio_input("Sing Rest of music:🎙️", key=key)
25
+ if audio_value:
26
+ with open("user_sing.mp3", "wb") as f:
27
+ f.write(audio_value.getbuffer())
28
+
29
+ if has_background:
30
+ file_to_transcribe = split_vocals("user_sing.mp3")[1]
31
+ else:
32
+ file_to_transcribe = "user_sing.mp3"
33
+
34
+
35
+ if language == "en":
36
+ english_model = whisper.load_model("base.en")
37
+ user_lyrics = english_model.transcribe(file_to_transcribe, language=language)["text"]
38
+ else:
39
+ persian_model = Model.load("hezarai/whisper-small-fa")
40
+ user_lyrics = persian_model.predict(file_to_transcribe)[0]["text"]
41
+
42
+ st.write(user_lyrics)
43
+ similarity_score = cosine_sim(typed_lyrics, user_lyrics)
44
+ if similarity_score > 0.85:
45
+ st.success('Awsome! You are doing great', icon="✅")
46
+ st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
47
+ else:
48
+ st.error('Awful! Try harder next time', icon="🚨")
49
+ st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
50
+
51
+ def change_volume(input_file, output_file, volume_factor):
52
+ sound = AudioSegment.from_mp3(input_file)
53
+ volume_changed = sound + volume_factor
54
+ volume_changed.export(output_file, format="mp3")
55
+
56
+ def change_speed(input_file, output_file, speed_factor):
57
+ sound, sr = librosa.load(input_file)
58
+ speed_changed = librosa.effects.time_stretch(sound, rate=speed_factor)
59
+ sf.write(output_file, speed_changed, sr)
60
+
61
+ def change_pitch(input_file, output_file, pitch_factor):
62
+ sound, sr = librosa.load(input_file)
63
+ pitch_changed = librosa.effects.pitch_shift(sound, sr=sr, n_steps=pitch_factor)
64
+ sf.write(output_file, pitch_changed, sr)
65
+
66
+ def low_pass_filter(input_file, output_file, cutoff_freq):
67
+ sound = AudioSegment.from_mp3(input_file)
68
+ low_filtered_sound = sound.low_pass_filter(cutoff_freq)
69
+ low_filtered_sound.export(output_file, format="mp3")
70
+
71
+ def high_pass_filter(input_file, output_file, cutoff_freq):
72
+ sound = AudioSegment.from_mp3(input_file)
73
+ high_filtered_sound = sound.high_pass_filter(cutoff_freq)
74
+ high_filtered_sound.export(output_file, format="mp3")
75
+
76
+ def pan_left_right(input_file, output_file, pan_factor):
77
+ sound = AudioSegment.from_mp3(input_file)
78
+ pan_sound = sound.pan(pan_factor)
79
+ pan_sound.export(output_file, format="mp3")
80
+
81
+ def fade_in_ms(input_file, output_file, fade_factor):
82
+ sound = AudioSegment.from_mp3(input_file)
83
+ faded_sound = sound.fade_in(fade_factor)
84
+ faded_sound.export(output_file, format="mp3")
85
+
86
+ def fade_out_ms(input_file, output_file, fade_factor):
87
+ sound = AudioSegment.from_mp3(input_file)
88
+ faded_sound = sound.fade_out(fade_factor)
89
+ faded_sound.export(output_file, format="mp3")
90
+
91
+ def split_vocals(input_file):
92
+ separator = Separator(output_format="mp3", log_level=ERROR)
93
+ separator.load_model("MGM_MAIN_v4.pth")
94
+ result_list = separator.separate(input_file, primary_output_name=input_file[:-4]+"_instruments", secondary_output_name=input_file[:-4]+"_vocals")
95
+ return result_list