sagar007's picture
Update app.py
ba4c4c2 verified
raw
history blame
11.1 kB
import os
import torch
import gradio as gr
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from diffusers import DiffusionPipeline
#
# Determine the appropriate device and dtype
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
# Load the pipeline
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True if torch_device == "cpu" else False
).to(torch_device)
# Load textual inversions
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
# Update style token dictionary
style_token_dict = {
"Illustration Style": '<illustration-style>',
"Line Art": '<line-art>',
"Hitokomoru Style": '<hitokomoru-style-nao>',
"Marc Allante": '<Marc_Allante>',
"Midjourney": '<midjourney-style>',
"Hanfu Anime": '<hanfu-anime-style>',
"Birb Style": '<birb-style>'
}
def apply_guidance(image, guidance_method, loss_scale):
# Convert PIL Image to tensor
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
if guidance_method == 'Grayscale':
gray = tfms.Grayscale(3)(img_tensor)
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Bright':
bright = F.relu(img_tensor) # Simple brightness increase
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Contrast':
mean = img_tensor.mean()
contrast = (img_tensor - mean) * 2 + mean
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Symmetry':
flipped = torch.flip(img_tensor, [3]) # Flip horizontally
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Saturation':
saturated = tfms.functional.adjust_saturation(img_tensor, 2)
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
else:
return image
# Convert back to PIL Image
guided = guided.squeeze(0).clamp(0, 1)
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
return Image.fromarray(guided)
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
prompt = text + " " + style_token_dict[style]
# Convert image_size from string to tuple of integers
size = tuple(map(int, image_size.split('x')))
# Generate image with pipeline
image_pipeline = sd_pipeline(
prompt,
num_inference_steps=inference_step,
guidance_scale=guidance_scale,
generator=torch.Generator(device=torch_device).manual_seed(seed),
height=size[1],
width=size[0]
).images[0]
# Apply guidance
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)
return image_pipeline, image_guide
# Your existing imports and model setup code here...
css_and_html = """
<style>
body {
background: linear-gradient(135deg, #1a1c2c, #4a4e69, #9a8c98);
font-family: 'Arial', sans-serif;
color: #f2e9e4;
margin: 0;
padding: 0;
min-height: 100vh;
}
#app-header {
text-align: center;
background: rgba(255, 255, 255, 0.1);
padding: 30px;
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.3);
position: relative;
overflow: hidden;
margin: 20px auto;
max-width: 800px;
}
#app-header::before {
content: "";
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%);
animation: shimmer 15s infinite linear;
}
@keyframes shimmer {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
#app-header h1 {
color: #f2e9e4;
font-size: 2.5em;
margin-bottom: 15px;
text-shadow: 2px 2px 4px rgba(0,0,0,0.5);
}
#app-header p {
font-size: 1.2em;
color: #c9ada7;
}
.concept-container {
display: flex;
justify-content: center;
gap: 20px;
margin-top: 30px;
flex-wrap: wrap;
}
.concept {
position: relative;
transition: transform 0.3s, box-shadow 0.3s;
border-radius: 15px;
overflow: hidden;
background: rgba(255, 255, 255, 0.1);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
width: 150px;
}
.concept:hover {
transform: translateY(-10px) rotate(3deg);
box-shadow: 0 15px 30px rgba(0,0,0,0.4);
}
.concept img {
width: 100%;
height: 120px;
object-fit: cover;
}
.concept-description {
background-color: rgba(110, 72, 170, 0.8);
color: white;
padding: 10px;
font-size: 0.9em;
text-align: center;
}
.artifact {
position: absolute;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%);
border-radius: 50%;
opacity: 0.5;
pointer-events: none;
}
.artifact.large {
width: 400px;
height: 400px;
top: -100px;
left: -200px;
animation: float 20s infinite ease-in-out;
}
.artifact.medium {
width: 300px;
height: 300px;
bottom: -150px;
right: -150px;
animation: float 15s infinite ease-in-out reverse;
}
.artifact.small {
width: 150px;
height: 150px;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
animation: pulse 5s infinite alternate;
}
@keyframes float {
0%, 100% { transform: translateY(0) rotate(0deg); }
50% { transform: translateY(-20px) rotate(10deg); }
}
@keyframes pulse {
0% { transform: translate(-50%, -50%) scale(1); opacity: 0.5; }
100% { transform: translate(-50%, -50%) scale(1.1); opacity: 0.8; }
}
/* Gradio component styling */
.gr-box {
background-color: rgba(255, 255, 255, 0.1) !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
}
.gr-input, .gr-button {
background-color: rgba(255, 255, 255, 0.1) !important;
color: #f2e9e4 !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
}
.gr-button:hover {
background-color: rgba(255, 255, 255, 0.2) !important;
}
.gr-form {
background-color: transparent !important;
}
.concept {
position: relative;
transition: transform 0.3s, box-shadow 0.3s;
border-radius: 15px;
overflow: hidden;
background: rgba(255, 255, 255, 0.1);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
width: 150px;
height: 150px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
.concept:hover {
transform: translateY(-10px) rotate(3deg);
box-shadow: 0 15px 30px rgba(0,0,0,0.4);
}
.concept-emoji {
font-size: 60px;
margin-bottom: 10px;
}
.concept-description {
background-color: rgba(110, 72, 170, 0.8);
color: white;
padding: 10px;
font-size: 0.9em;
text-align: center;
width: 100%;
position: absolute;
bottom: 0;
}
</style>
<div id="app-header">
<div class="artifact large"></div>
<div class="artifact medium"></div>
<div class="artifact small"></div>
<h1>Dreamscape Creator</h1>
<p>Unleash your imagination with AI-powered generative art</p>
<div class="concept-container">
<div class="concept">
<div class="concept-emoji">🎨</div>
<div class="concept-description">Illustration Style</div>
</div>
<div class="concept">
<div class="concept-emoji">✏️</div>
<div class="concept-description">Line Art</div>
</div>
<div class="concept">
<div class="concept-emoji">🌌</div>
<div class="concept-description">Midjourney Style</div>
</div>
<div class="concept">
<div class="concept-emoji">πŸ‘˜</div>
<div class="concept-description">Hanfu Anime</div>
</div>
</div>
</div>
"""
with gr.Blocks(css=css_and_html) as demo:
gr.HTML(css_and_html)
with gr.Row():
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...")
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style")
with gr.Row():
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps")
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale")
seed = gr.Slider(0, 10000, 42, step=1, label="Seed")
with gr.Row():
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale")
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale")
with gr.Row():
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256")
with gr.Row():
generate_button = gr.Button("Create Dreamscape", variant="primary")
with gr.Row():
output_image = gr.Image(label="Your Dreamscape")
output_image_guided = gr.Image(label="Guided Dreamscape")
generate_button.click(
inference,
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
outputs=[output_image, output_image_guided]
)
gr.Examples(
examples=[
["Magical Forest with Glowing Trees", 'Birb Style', 40, 7.5, 42, 'Grayscale', 200, "256x256"],
[" Ancient Temple Ruins at Sunset", 'Midjourney', 30, 8.0, 123, 'Bright', 5678, "256x256"],
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 40, 7.0, 789, 'Contrast', 250, "256x256"],
],
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
outputs=[output_image, output_image_guided],
fn=inference,
cache_examples=True,
examples_per_page=5
)
if __name__ == "__main__":
demo.launch()