File size: 6,011 Bytes
4f25de8
 
 
1ed31e5
4f25de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed31e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f25de8
1ed31e5
4f25de8
 
 
 
1ed31e5
 
 
 
 
 
4f25de8
 
 
 
 
 
1ed31e5
 
 
 
4f25de8
 
 
 
 
1ed31e5
 
 
 
 
 
 
4f25de8
 
 
 
 
1ed31e5
 
 
 
4f25de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pandas as pd
from huggingface_hub import hf_hub_download

def _metric(solution_df,submission_df, mode = "top_level", admin = False, additional_columns = None):
    """
    This function calculates the accuracy of the generated predictions.

    Parameters
    ----------
    solution_df : pandas.DataFrame
        The dataframe containing the solution data.
    submission_df : pandas.DataFrame
        The dataframe containing the submission data.
    mode : str, optional
        The mode of evaluation. Can be "top_level" or "bottom_level". The default is "top_level".
    
    Returns
    -------
    None.
    """


    solution_df["submission_pred"] = submission_df["pred"]
   
    if admin:
        source_col = "source_og"
    else:
        source_col = "source"

    
    cols = ["split","pred", source_col]

    solution_df["correct"] = solution_df["pred"] == solution_df["submission_pred"]
    acc_all = (
        solution_df.groupby(cols)["correct"].mean().reset_index()
                .rename(columns={"correct": "accuracy"})
    )
    acc_all["score_name"] = acc_all["pred"] + "_" + acc_all[source_col]

    if additional_columns == None:
        additional_columns = []

    if not admin:
        # annonomize
        for c in additional_columns:
            vals_lookup = pd.Series({v:f"{c[:1]}_{i:02}" for i,v in enumerate(sorted(solution_df[c].unique()))})
            solution_df.loc[:,c]  = vals_lookup.loc[solution_df.loc[:,c].values].values

    def acc_by_additional_columns(temp, col):
        temp = temp.groupby(col)["correct"].mean().reset_index().rename(columns={"correct": "accuracy"})
        temp["score_name"] = col[:3] + "_" + temp[col]
        return temp.set_index("score_name")["accuracy"].sort_index()
    
    def acc_by_source(temp):
        scores_by_source = temp.set_index("score_name")["accuracy"].sort_index()
        scores_by_source["generated_accuracy"] = temp.query("pred=='generated'")["accuracy"].mean()
        scores_by_source["pristine_accuracy"] = temp.query("pred=='pristine'")["accuracy"].mean()
        scores_by_source["balanced_accuracy"] = (scores_by_source["generated_accuracy"] + scores_by_source["pristine_accuracy"])/2.
        return scores_by_source
    

    evaluation = {}
    
    split = "public"
    
    temp = acc_all.query(f"split=='{split}'")
    scores_by_source = acc_by_source(temp)
    # scores_by_source = temp.set_index("score_name")["accuracy"].sort_index()
    # scores_by_source["generated_accuracy"] = temp.query("pred=='generated'")["accuracy"].mean()
    # scores_by_source["pristine_accuracy"] = temp.query("pred=='pristine'")["accuracy"].mean()
    # scores_by_source["balanced_accuracy"] = (scores_by_source["generated_accuracy"] + scores_by_source["pristine_accuracy"])/2.
    
    
    if mode == "top_level":
        scores_to_save = ["generated_accuracy", "pristine_accuracy", "balanced_accuracy"]
        evaluation[f"{split}_score"] = scores_by_source.loc[scores_to_save].to_dict()
    else:
        out = [scores_by_source]
        for col in additional_columns:                
            out.append(acc_by_additional_columns(solution_df.query(f"split=='{split}'"),col))
        scores_by_source = pd.concat(out)
        evaluation[f"{split}_score"] = scores_by_source.to_dict()

    split = "private"
    # private has everything

    temp = acc_all
    scores_by_source = acc_by_source(temp)

    # scores_by_source = temp.set_index("score_name")["accuracy"].sort_index()
    # scores_by_source["generated_accuracy"] = temp.query("pred=='generated'")["accuracy"].mean()
    # scores_by_source["pristine_accuracy"] = temp.query("pred=='pristine'")["accuracy"].mean()
    # scores_by_source["balanced_accuracy"] = (scores_by_source["generated_accuracy"] + scores_by_source["pristine_accuracy"])/2.
    
    if mode == "top_level":
        scores_to_save = ["generated_accuracy", "pristine_accuracy", "balanced_accuracy"]
        evaluation[f"{split}_score"] = scores_by_source.loc[scores_to_save].to_dict()
    else:
        out = [scores_by_source]
        for col in additional_columns:                
            out.append(acc_by_additional_columns(solution_df,col))
        scores_by_source = pd.concat(out)
        evaluation[f"{split}_score"] = scores_by_source.to_dict()
    

    if "time" in submission_df.columns:
        solution_df["submission_time"] = submission_df["time"]
        
        split = "public"
        evaluation[f"{split}_score"]["total_time"] = float(solution_df.query(f"split=='{split}'")["submission_time"].sum())

        split = "private"
        evaluation[f"{split}_score"]["total_time"] = float(solution_df["submission_time"].sum())
    else:
        for split in ["public","private"]:
            evaluation[f"{split}_score"]["total_time"] = -1


    if "score" in submission_df.columns:
        solution_df["submission_score"] = submission_df["score"]
    
        split = "public"
        evaluation[f"{split}_score"]["fail_rate"] = float(solution_df.query(f"split=='{split}'")["submission_score"].isna().mean())

        split = "private"
        evaluation[f"{split}_score"]["fail_rate"] = float(solution_df["submission_score"].isna().mean())

    else:
        for split in ["public","private"]:
            evaluation[f"{split}_score"]["fail_rate"] = -1



    return evaluation



def compute(params):
    solution_file = hf_hub_download(
        repo_id=params.competition_id,
        filename="solution.csv",
        token=params.token,
        repo_type="dataset",
    )

    solution_df = pd.read_csv(solution_file).set_index(params.submission_id_col)

    submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv"
    submission_file = hf_hub_download(
        repo_id=params.competition_id,
        filename=submission_filename,
        token=params.token,
        repo_type="dataset",
    )
    
    submission_df = pd.read_csv(submission_file).set_index(params.submission_id_col)

    return _metric(solution_df,submission_df)