Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import time
|
4 |
-
from langchain_community.document_loaders import UnstructuredFileLoader # Updated import
|
5 |
|
6 |
def extract_text_with_langchain_pdf(pdf_file):
|
7 |
"""Extract text from a PDF using LangChain's UnstructuredFileLoader."""
|
8 |
-
loader = UnstructuredFileLoader(pdf_file) #
|
9 |
documents = loader.load()
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
for doc in documents:
|
14 |
-
page_num = doc.metadata.get("page_number", "Unknown") #
|
15 |
-
|
16 |
-
for para in paragraphs:
|
17 |
-
if para.strip(): # Skip empty paragraphs
|
18 |
-
extracted_data.append((page_num, para.strip()))
|
19 |
-
|
20 |
-
return extracted_data
|
21 |
-
|
22 |
-
def process_pdf_with_batches(pdf_file, batch_size, wait_time):
|
23 |
-
"""Extract text, split into batches, and store in a DataFrame."""
|
24 |
-
extracted_data = extract_text_with_langchain_pdf(pdf_file)
|
25 |
-
doc_name = pdf_file.split("/")[-1]
|
26 |
-
|
27 |
-
# Create a DataFrame from the extracted data
|
28 |
-
df = pd.DataFrame(extracted_data, columns=["Page", "Paragraph"])
|
29 |
-
df["Document"] = doc_name # Add document name as a column
|
30 |
-
|
31 |
-
# Split the DataFrame into batches for display
|
32 |
-
batches = [df[i:i + batch_size] for i in range(0, len(df), batch_size)]
|
33 |
|
34 |
-
|
35 |
-
for idx, batch in enumerate(batches):
|
36 |
-
output.append(f"Batch {idx + 1}:\n{batch.to_string(index=False)}")
|
37 |
-
time.sleep(wait_time) # Wait between batches
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
df.to_csv(output_path, index=False)
|
45 |
-
return output_path
|
46 |
|
47 |
with gr.Blocks() as demo:
|
48 |
with gr.Row():
|
49 |
-
gr.Markdown("#
|
50 |
|
51 |
with gr.Row():
|
52 |
-
pdf_file = gr.File(label="Upload PDF", type="filepath")
|
53 |
|
54 |
with gr.Row():
|
55 |
-
|
56 |
-
wait_time = gr.Slider(label="Wait Time (seconds)", value=2, minimum=0, maximum=10, step=0.5)
|
57 |
|
58 |
with gr.Row():
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
"""Callback function to extract text, display batches, and save CSV."""
|
67 |
-
df, batch_output = process_pdf_with_batches(pdf_file, int(batch_size), wait_time)
|
68 |
-
csv_path = save_csv(df)
|
69 |
-
return batch_output, csv_path
|
70 |
|
71 |
-
extract_button.click(
|
72 |
-
on_extract,
|
73 |
-
inputs=[pdf_file, batch_size, wait_time],
|
74 |
-
outputs=[output_text, download_button]
|
75 |
-
)
|
76 |
|
77 |
-
# Launch the Gradio
|
78 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
|
|
|
|
3 |
|
4 |
def extract_text_with_langchain_pdf(pdf_file):
|
5 |
"""Extract text from a PDF using LangChain's UnstructuredFileLoader."""
|
6 |
+
loader = UnstructuredFileLoader(pdf_file) # Use the file path directly
|
7 |
documents = loader.load()
|
8 |
|
9 |
+
# Concatenate the content from all pages with page numbers
|
10 |
+
pdf_content = ""
|
11 |
for doc in documents:
|
12 |
+
page_num = doc.metadata.get("page_number", "Unknown") # Get the page number if available
|
13 |
+
pdf_content += f"\n\n--- Page {page_num} ---\n{doc.page_content.strip()}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
return pdf_content
|
|
|
|
|
|
|
16 |
|
17 |
+
def save_text_to_file(text, output_filename="extracted_content.txt"):
|
18 |
+
"""Save extracted text to a .txt file."""
|
19 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
20 |
+
f.write(text)
|
21 |
+
return output_filename
|
|
|
|
|
22 |
|
23 |
with gr.Blocks() as demo:
|
24 |
with gr.Row():
|
25 |
+
gr.Markdown("# PDF Text Extractor with Page Numbers")
|
26 |
|
27 |
with gr.Row():
|
28 |
+
pdf_file = gr.File(label="Upload PDF", type="filepath")
|
29 |
|
30 |
with gr.Row():
|
31 |
+
extract_button = gr.Button("Extract and Download Text")
|
|
|
32 |
|
33 |
with gr.Row():
|
34 |
+
download_button = gr.File(label="Download Extracted Text")
|
35 |
|
36 |
+
def on_extract(pdf_file):
|
37 |
+
"""Callback function to extract text with page numbers and return a downloadable .txt file."""
|
38 |
+
extracted_text = extract_text_with_langchain_pdf(pdf_file)
|
39 |
+
txt_path = save_text_to_file(extracted_text)
|
40 |
+
return txt_path
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
extract_button.click(on_extract, inputs=[pdf_file], outputs=[download_button])
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Launch the Gradio
|
45 |
+
demo.queue().launch()
|