Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,150 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
from langchain_community.document_loaders import UnstructuredFileLoader
|
4 |
|
5 |
-
def extract_text_with_langchain_pdf(
|
6 |
-
"""
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"Document": doc_name,
|
23 |
-
"Page": page_num,
|
24 |
-
"Paragraph": paragraph.strip()
|
25 |
-
})
|
26 |
-
|
27 |
-
# Convert the extracted data to a DataFrame
|
28 |
-
df = pd.DataFrame(extracted_data)
|
29 |
-
return df
|
30 |
-
|
31 |
-
def save_df_to_csv(df, output_filename="extracted_content.csv"):
|
32 |
-
"""Save the DataFrame to a CSV file."""
|
33 |
-
df.to_csv(output_filename, index=False)
|
34 |
-
return output_filename
|
35 |
|
36 |
with gr.Blocks() as demo:
|
|
|
|
|
37 |
with gr.Row():
|
38 |
-
gr.
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Row():
|
41 |
-
|
42 |
-
|
43 |
with gr.Row():
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
with gr.Row():
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Launch the Gradio app
|
58 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import io
|
4 |
from langchain_community.document_loaders import UnstructuredFileLoader
|
5 |
|
6 |
+
def extract_text_with_langchain_pdf(pdf_file_path):
|
7 |
+
"""
|
8 |
+
Extract text from a PDF page by page using LangChain's UnstructuredFileLoader.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
pdf_file_path (str): The file path to the uploaded PDF.
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: DataFrame containing the extracted text with metadata, and the full concatenated text.
|
15 |
+
"""
|
16 |
+
try:
|
17 |
+
loader = UnstructuredFileLoader(pdf_file_path)
|
18 |
+
documents = loader.load()
|
19 |
|
20 |
+
extracted_data = []
|
21 |
+
doc_name = pdf_file_path.split("/")[-1] # Extract document name
|
22 |
|
23 |
+
# Concatenate all page contents into a single string
|
24 |
+
pdf_pages_content = '\n'.join(doc.page_content for doc in documents)
|
25 |
+
|
26 |
+
for doc in documents:
|
27 |
+
page_num = doc.metadata.get("page_number", "Unknown")
|
28 |
+
paragraphs = doc.page_content.split("\n\n") # Split into paragraphs
|
29 |
+
|
30 |
+
for paragraph in paragraphs:
|
31 |
+
clean_para = paragraph.strip()
|
32 |
+
if clean_para:
|
33 |
+
extracted_data.append({
|
34 |
+
"Document": doc_name,
|
35 |
+
"Page": page_num,
|
36 |
+
"Paragraph": clean_para
|
37 |
+
})
|
38 |
+
|
39 |
+
df = pd.DataFrame(extracted_data)
|
40 |
+
return df, pdf_pages_content
|
41 |
+
|
42 |
+
except Exception as e:
|
43 |
+
raise RuntimeError(f"Error during PDF extraction: {e}")
|
44 |
+
|
45 |
+
def df_to_csv_bytes(df):
|
46 |
+
"""
|
47 |
+
Convert DataFrame to CSV in bytes.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
df (pd.DataFrame): The DataFrame to convert.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
bytes: CSV data in bytes.
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
buffer = io.StringIO()
|
57 |
+
df.to_csv(buffer, index=False)
|
58 |
+
csv_data = buffer.getvalue().encode('utf-8')
|
59 |
+
buffer.close()
|
60 |
+
return csv_data
|
61 |
+
except Exception as e:
|
62 |
+
raise RuntimeError(f"Error during CSV conversion: {e}")
|
63 |
+
|
64 |
+
def text_to_txt_bytes(text):
|
65 |
+
"""
|
66 |
+
Convert text to TXT in bytes.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
text (str): The text to convert.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
bytes: TXT data in bytes.
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
txt_data = text.encode('utf-8')
|
76 |
+
return txt_data
|
77 |
+
except Exception as e:
|
78 |
+
raise RuntimeError(f"Error during TXT conversion: {e}")
|
79 |
+
|
80 |
+
def on_extract(pdf_file):
|
81 |
+
"""
|
82 |
+
Callback function to extract text from PDF and return CSV and TXT data.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
pdf_file (gr.File): Dictionary containing file information.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
tuple: CSV bytes and filename, TXT bytes and filename.
|
89 |
+
"""
|
90 |
+
if pdf_file is None:
|
91 |
+
return gr.update(), gr.update(), "No file uploaded.", "No file uploaded."
|
92 |
+
|
93 |
+
try:
|
94 |
+
# Extract text and create DataFrame
|
95 |
+
df, full_text = extract_text_with_langchain_pdf(pdf_file.name)
|
96 |
+
|
97 |
+
# Convert DataFrame to CSV bytes
|
98 |
+
csv_bytes = df_to_csv_bytes(df)
|
99 |
+
csv_filename = f"{pdf_file.name.rsplit('.', 1)[0]}_extracted.csv"
|
100 |
+
|
101 |
+
# Convert full text to TXT bytes
|
102 |
+
txt_bytes = text_to_txt_bytes(full_text)
|
103 |
+
txt_filename = f"{pdf_file.name.rsplit('.', 1)[0]}_full_text.txt"
|
104 |
|
105 |
+
return csv_bytes, csv_filename, txt_bytes, txt_filename
|
106 |
+
except Exception as e:
|
107 |
+
return gr.update(), gr.update(), f"Extraction failed: {e}", f"Extraction failed: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
with gr.Blocks() as demo:
|
110 |
+
gr.Markdown("# 📄 PDF Text Extractor with Metadata and Multiple Exports")
|
111 |
+
|
112 |
with gr.Row():
|
113 |
+
pdf_input = gr.File(
|
114 |
+
label="Upload PDF",
|
115 |
+
file_types=[".pdf"],
|
116 |
+
type="file",
|
117 |
+
interactive=True
|
118 |
+
)
|
119 |
+
|
120 |
with gr.Row():
|
121 |
+
extract_button = gr.Button("Extract and Download")
|
122 |
+
|
123 |
with gr.Row():
|
124 |
+
csv_download = gr.Download(
|
125 |
+
label="Download Extracted CSV"
|
126 |
+
)
|
127 |
+
txt_download = gr.Download(
|
128 |
+
label="Download Full Text"
|
129 |
+
)
|
130 |
+
|
131 |
with gr.Row():
|
132 |
+
error_output = gr.Textbox(
|
133 |
+
label="Status",
|
134 |
+
interactive=False,
|
135 |
+
lines=2
|
136 |
+
)
|
137 |
+
|
138 |
+
extract_button.click(
|
139 |
+
fn=on_extract,
|
140 |
+
inputs=pdf_input,
|
141 |
+
outputs=[csv_download, txt_download, error_output, error_output]
|
142 |
+
)
|
143 |
+
|
144 |
+
gr.Markdown("""
|
145 |
+
---
|
146 |
+
Developed Gradio and LangChain.
|
147 |
+
""")
|
148 |
|
149 |
# Launch the Gradio app
|
150 |
demo.queue().launch()
|