Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
import os
|
5 |
-
from langchain_community.document_loaders import UnstructuredPDFLoader
|
6 |
-
from PyPDF2 import PdfReader
|
7 |
|
8 |
-
def
|
9 |
-
"""Extract text from
|
10 |
-
#
|
11 |
-
|
12 |
-
num_pages = len(reader.pages)
|
13 |
-
doc_name = os.path.basename(pdf_file_path)
|
14 |
|
|
|
15 |
extracted_data = []
|
16 |
|
17 |
-
for
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if not documents:
|
24 |
-
print(f"No content found on Page {page_num}.")
|
25 |
-
continue
|
26 |
-
|
27 |
-
for doc in documents:
|
28 |
-
paragraphs = doc.page_content.split("\n\n") # Split text into paragraphs
|
29 |
-
for para in paragraphs:
|
30 |
-
if para.strip(): # Skip empty paragraphs
|
31 |
-
extracted_data.append({
|
32 |
-
"Document": doc_name,
|
33 |
-
"Page": page_num,
|
34 |
-
"Paragraph": para.strip()
|
35 |
-
})
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
df.to_csv(output_filename, index=False)
|
45 |
return output_filename
|
46 |
|
47 |
-
def extract_and_save(pdf_file):
|
48 |
-
"""Main function to extract text and save to CSV."""
|
49 |
-
if pdf_file is None:
|
50 |
-
return "No file uploaded."
|
51 |
-
|
52 |
-
# Extract text by page
|
53 |
-
extracted_data = extract_text_by_page(pdf_file.name)
|
54 |
-
|
55 |
-
if not extracted_data:
|
56 |
-
return "No text extracted from the PDF."
|
57 |
-
|
58 |
-
# Save to CSV
|
59 |
-
csv_path = save_to_csv(extracted_data)
|
60 |
-
|
61 |
-
return csv_path
|
62 |
-
|
63 |
-
# Gradio Interface
|
64 |
with gr.Blocks() as demo:
|
65 |
-
gr.Markdown("# PDF Text Extractor with Page Tracking and CSV Export")
|
66 |
-
|
67 |
with gr.Row():
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
with gr.Row():
|
71 |
extract_button = gr.Button("Extract and Download CSV")
|
72 |
-
|
73 |
with gr.Row():
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
|
82 |
# Launch the Gradio app
|
83 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
|
|
|
|
|
|
4 |
|
5 |
+
def extract_text_with_langchain_pdf(pdf_file):
|
6 |
+
"""Extract text from a PDF page by page using LangChain's UnstructuredFileLoader."""
|
7 |
+
loader = UnstructuredFileLoader(pdf_file) # Use the file path directly
|
8 |
+
documents = loader.load()
|
|
|
|
|
9 |
|
10 |
+
# Initialize an empty list to collect all extracted paragraphs
|
11 |
extracted_data = []
|
12 |
|
13 |
+
# Extract content for each page, split into paragraphs, and collect metadata
|
14 |
+
doc_name = pdf_file.split("/")[-1] # Get the document name
|
15 |
+
for doc in documents:
|
16 |
+
page_num = doc.metadata.get("page_number", "Unknown") # Get the page number if available
|
17 |
+
paragraphs = doc.page_content.split("\n\n") # Split content by paragraphs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
for paragraph in paragraphs:
|
20 |
+
if paragraph.strip(): # Skip empty paragraphs
|
21 |
+
extracted_data.append({
|
22 |
+
"Document": doc_name,
|
23 |
+
"Page": page_num,
|
24 |
+
"Paragraph": paragraph.strip()
|
25 |
+
})
|
26 |
+
|
27 |
+
# Convert the extracted data to a DataFrame
|
28 |
+
df = pd.DataFrame(extracted_data)
|
29 |
+
return df
|
30 |
+
|
31 |
+
def save_df_to_csv(df, output_filename="extracted_content.csv"):
|
32 |
+
"""Save the DataFrame to a CSV file."""
|
33 |
df.to_csv(output_filename, index=False)
|
34 |
return output_filename
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
with gr.Blocks() as demo:
|
|
|
|
|
37 |
with gr.Row():
|
38 |
+
gr.Markdown("# PDF Text Extractor with Metadata and CSV Export")
|
39 |
+
|
40 |
+
with gr.Row():
|
41 |
+
pdf_file = gr.File(label="Upload PDF", type="filepath")
|
42 |
+
|
43 |
with gr.Row():
|
44 |
extract_button = gr.Button("Extract and Download CSV")
|
45 |
+
|
46 |
with gr.Row():
|
47 |
+
download_button = gr.File(label="Download Extracted CSV")
|
48 |
+
|
49 |
+
def on_extract(pdf_file):
|
50 |
+
"""Callback function to extract text, store in a DataFrame, and return a downloadable CSV."""
|
51 |
+
df = extract_text_with_langchain_pdf(pdf_file)
|
52 |
+
csv_path = save_df_to_csv(df)
|
53 |
+
return csv_path
|
54 |
+
|
55 |
+
extract_button.click(on_extract, inputs=[pdf_file], outputs=[download_button])
|
56 |
|
57 |
# Launch the Gradio app
|
58 |
demo.queue().launch()
|