Spaces:
Runtime error
Runtime error
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput, logging | |
from ..utils.torch_utils import randn_tensor | |
from .scheduling_utils import SchedulerMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete | |
class EDMEulerSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: Optional[torch.FloatTensor] = None | |
class EDMEulerScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1]. | |
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." | |
https://arxiv.org/abs/2206.00364 | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
sigma_min (`float`, *optional*, defaults to 0.002): | |
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable | |
range is [0, 10]. | |
sigma_max (`float`, *optional*, defaults to 80.0): | |
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable | |
range is [0.2, 80.0]. | |
sigma_data (`float`, *optional*, defaults to 0.5): | |
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1]. | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
prediction_type (`str`, defaults to `epsilon`, *optional*): | |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
Video](https://imagen.research.google/video/paper.pdf) paper). | |
rho (`float`, *optional*, defaults to 7.0): | |
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1]. | |
""" | |
_compatibles = [] | |
order = 1 | |
def __init__( | |
self, | |
sigma_min: float = 0.002, | |
sigma_max: float = 80.0, | |
sigma_data: float = 0.5, | |
num_train_timesteps: int = 1000, | |
prediction_type: str = "epsilon", | |
rho: float = 7.0, | |
): | |
# setable values | |
self.num_inference_steps = None | |
ramp = torch.linspace(0, 1, num_train_timesteps) | |
sigmas = self._compute_sigmas(ramp) | |
self.timesteps = self.precondition_noise(sigmas) | |
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
self.is_scale_input_called = False | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
def init_noise_sigma(self): | |
# standard deviation of the initial noise distribution | |
return (self.config.sigma_max**2 + 1) ** 0.5 | |
def step_index(self): | |
""" | |
The index counter for current timestep. It will increae 1 after each scheduler step. | |
""" | |
return self._step_index | |
def begin_index(self): | |
""" | |
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
""" | |
return self._begin_index | |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
def set_begin_index(self, begin_index: int = 0): | |
""" | |
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
Args: | |
begin_index (`int`): | |
The begin index for the scheduler. | |
""" | |
self._begin_index = begin_index | |
def precondition_inputs(self, sample, sigma): | |
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) | |
scaled_sample = sample * c_in | |
return scaled_sample | |
def precondition_noise(self, sigma): | |
if not isinstance(sigma, torch.Tensor): | |
sigma = torch.tensor([sigma]) | |
c_noise = 0.25 * torch.log(sigma) | |
return c_noise | |
def precondition_outputs(self, sample, model_output, sigma): | |
sigma_data = self.config.sigma_data | |
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) | |
if self.config.prediction_type == "epsilon": | |
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
elif self.config.prediction_type == "v_prediction": | |
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
else: | |
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") | |
denoised = c_skip * sample + c_out * model_output | |
return denoised | |
def scale_model_input( | |
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] | |
) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
Args: | |
sample (`torch.FloatTensor`): | |
The input sample. | |
timestep (`int`, *optional*): | |
The current timestep in the diffusion chain. | |
Returns: | |
`torch.FloatTensor`: | |
A scaled input sample. | |
""" | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
sigma = self.sigmas[self.step_index] | |
sample = self.precondition_inputs(sample, sigma) | |
self.is_scale_input_called = True | |
return sample | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
self.num_inference_steps = num_inference_steps | |
ramp = np.linspace(0, 1, self.num_inference_steps) | |
sigmas = self._compute_sigmas(ramp) | |
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
self.timesteps = self.precondition_noise(sigmas) | |
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17 | |
def _compute_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor: | |
"""Constructs the noise schedule of Karras et al. (2022).""" | |
sigma_min = sigma_min or self.config.sigma_min | |
sigma_max = sigma_max or self.config.sigma_max | |
rho = self.config.rho | |
min_inv_rho = sigma_min ** (1 / rho) | |
max_inv_rho = sigma_max ** (1 / rho) | |
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
return sigmas | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep | |
def index_for_timestep(self, timestep, schedule_timesteps=None): | |
if schedule_timesteps is None: | |
schedule_timesteps = self.timesteps | |
indices = (schedule_timesteps == timestep).nonzero() | |
# The sigma index that is taken for the **very** first `step` | |
# is always the second index (or the last index if there is only 1) | |
# This way we can ensure we don't accidentally skip a sigma in | |
# case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
pos = 1 if len(indices) > 1 else 0 | |
return indices[pos].item() | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
def _init_step_index(self, timestep): | |
if self.begin_index is None: | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
self._step_index = self.index_for_timestep(timestep) | |
else: | |
self._step_index = self._begin_index | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: Union[float, torch.FloatTensor], | |
sample: torch.FloatTensor, | |
s_churn: float = 0.0, | |
s_tmin: float = 0.0, | |
s_tmax: float = float("inf"), | |
s_noise: float = 1.0, | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
) -> Union[EDMEulerSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
s_churn (`float`): | |
s_tmin (`float`): | |
s_tmax (`float`): | |
s_noise (`float`, defaults to 1.0): | |
Scaling factor for noise added to the sample. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
return_dict (`bool`): | |
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or | |
tuple. | |
Returns: | |
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is | |
returned, otherwise a tuple is returned where the first element is the sample tensor. | |
""" | |
if ( | |
isinstance(timestep, int) | |
or isinstance(timestep, torch.IntTensor) | |
or isinstance(timestep, torch.LongTensor) | |
): | |
raise ValueError( | |
( | |
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
" `EDMEulerScheduler.step()` is not supported. Make sure to pass" | |
" one of the `scheduler.timesteps` as a timestep." | |
), | |
) | |
if not self.is_scale_input_called: | |
logger.warning( | |
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " | |
"See `StableDiffusionPipeline` for a usage example." | |
) | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
# Upcast to avoid precision issues when computing prev_sample | |
sample = sample.to(torch.float32) | |
sigma = self.sigmas[self.step_index] | |
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
noise = randn_tensor( | |
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | |
) | |
eps = noise * s_noise | |
sigma_hat = sigma * (gamma + 1) | |
if gamma > 0: | |
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat) | |
# 2. Convert to an ODE derivative | |
derivative = (sample - pred_original_sample) / sigma_hat | |
dt = self.sigmas[self.step_index + 1] - sigma_hat | |
prev_sample = sample + derivative * dt | |
# Cast sample back to model compatible dtype | |
prev_sample = prev_sample.to(model_output.dtype) | |
# upon completion increase step index by one | |
self._step_index += 1 | |
if not return_dict: | |
return (prev_sample,) | |
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
# Make sure sigmas and timesteps have the same device and dtype as original_samples | |
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
# mps does not support float64 | |
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
else: | |
schedule_timesteps = self.timesteps.to(original_samples.device) | |
timesteps = timesteps.to(original_samples.device) | |
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index | |
if self.begin_index is None: | |
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] | |
else: | |
step_indices = [self.begin_index] * timesteps.shape[0] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < len(original_samples.shape): | |
sigma = sigma.unsqueeze(-1) | |
noisy_samples = original_samples + noise * sigma | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |