Spaces:
Runtime error
Runtime error
File size: 15,046 Bytes
2824520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Copyright 2024 Kakao Brain and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class UnCLIPSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class UnCLIPScheduler(SchedulerMixin, ConfigMixin):
"""
NOTE: do not use this scheduler. The DDPM scheduler has been updated to support the changes made here. This
scheduler will be removed and replaced with DDPM.
This is a modified DDPM Scheduler specifically for the karlo unCLIP model.
This scheduler has some minor variations in how it calculates the learned range variance and dynamically
re-calculates betas based off the timesteps it is skipping.
The scheduler also uses a slightly different step ratio when computing timesteps to use for inference.
See [`~DDPMScheduler`] for more information on DDPM scheduling
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
variance_type (`str`):
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small_log`
or `learned_range`.
clip_sample (`bool`, default `True`):
option to clip predicted sample between `-clip_sample_range` and `clip_sample_range` for numerical
stability.
clip_sample_range (`float`, default `1.0`):
The range to clip the sample between. See `clip_sample`.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process)
or `sample` (directly predicting the noisy sample`)
"""
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
variance_type: str = "fixed_small_log",
clip_sample: bool = True,
clip_sample_range: Optional[float] = 1.0,
prediction_type: str = "epsilon",
beta_schedule: str = "squaredcos_cap_v2",
):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'")
self.betas = betas_for_alpha_bar(num_train_timesteps)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
self.variance_type = variance_type
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Note that this scheduler uses a slightly different step ratio than the other diffusers schedulers. The
different step ratio is to mimic the original karlo implementation and does not affect the quality or accuracy
of the results.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
step_ratio = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
self.timesteps = torch.from_numpy(timesteps).to(device)
def _get_variance(self, t, prev_timestep=None, predicted_variance=None, variance_type=None):
if prev_timestep is None:
prev_timestep = t - 1
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
beta = self.betas[t]
else:
beta = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
variance = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
variance_type = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
variance = torch.log(torch.clamp(variance, min=1e-20))
variance = torch.exp(0.5 * variance)
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
min_log = variance.log()
max_log = beta.log()
frac = (predicted_variance + 1) / 2
variance = frac * max_log + (1 - frac) * min_log
return variance
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
prev_timestep: Optional[int] = None,
generator=None,
return_dict: bool = True,
) -> Union[UnCLIPSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
prev_timestep (`int`, *optional*): The previous timestep to predict the previous sample at.
Used to dynamically compute beta. If not given, `t-1` is used and the pre-computed beta is used.
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than UnCLIPSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
t = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
if prev_timestep is None:
prev_timestep = t - 1
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
beta = self.betas[t]
alpha = self.alphas[t]
else:
beta = 1 - alpha_prod_t / alpha_prod_t_prev
alpha = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"
" for the UnCLIPScheduler."
)
# 3. Clip "predicted x_0"
if self.config.clip_sample:
pred_original_sample = torch.clamp(
pred_original_sample, -self.config.clip_sample_range, self.config.clip_sample_range
)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * beta) / beta_prod_t
current_sample_coeff = alpha ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
variance = 0
if t > 0:
variance_noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, generator=generator, device=model_output.device
)
variance = self._get_variance(
t,
predicted_variance=predicted_variance,
prev_timestep=prev_timestep,
)
if self.variance_type == "fixed_small_log":
variance = variance
elif self.variance_type == "learned_range":
variance = (0.5 * variance).exp()
else:
raise ValueError(
f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"
" for the UnCLIPScheduler."
)
variance = variance * variance_noise
pred_prev_sample = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
|