mc-llava-3b / app.py
s3nh's picture
Update app.py
e0b18bc verified
raw
history blame
4.68 kB
from __future__ import annotations
import spaces
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer
import hashlib
import os
from transformers import AutoModel, AutoProcessor
import torch
model = AutoModel.from_pretrained("visheratin/MC-LLaVA-3b", torch_dtype=torch.float16, trust_remote_code=True).to("cuda")
processor = AutoProcessor.from_pretrained("visheratin/MC-LLaVA-3b", trust_remote_code=True)
if torch.cuda.is_available():
DEVICE = "cuda"
DTYPE = torch.float16
else:
DEVICE = "cpu"
DTYPE = torch.float32
def cached_vision_process(image, max_crops, num_tokens):
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
cache_path = f"visual_cache/{image_hash}-{max_crops}-{num_tokens}.pt"
if os.path.exists(cache_path):
return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
else:
processor_outputs = processor.image_processor([image], max_crops)
pixel_values = processor_outputs["pixel_values"]
pixel_values = [
value.to(model.device).to(model.dtype) for value in pixel_values
]
coords = processor_outputs["coords"]
coords = [value.to(model.device).to(model.dtype) for value in coords]
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
image_features = model.multi_modal_projector(image_outputs)
os.makedirs("visual_cache", exist_ok=True)
torch.save(image_features, cache_path)
return image_features.to(DEVICE, dtype=DTYPE)
@spaces.GPU(duration=20)
def answer_question(image, question, max_crops, num_tokens, sample, temperature, top_k):
if question is None or question.strip() == "":
yield "Please ask a question"
return
if image is None:
yield "Please upload an image"
return
prompt = f"""<|im_start|>user
<image>
{question}<|im_end|>
<|im_start|>assistant
"""
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
with torch.inference_mode():
inputs = processor(prompt, [image], model, max_crops=max_crops, num_tokens=num_tokens)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"image_features": inputs["image_features"],
"streamer": streamer,
"max_length": 1000,
"use_cache": True,
"eos_token_id": processor.tokenizer.eos_token_id,
"pad_token_id": processor.tokenizer.eos_token_id,
"temperature": temperature,
"do_sample": sample,
"top_k": top_k,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
output_started = False
for new_text in streamer:
if not output_started:
if "<|im_start|>assistant" in new_text:
output_started = True
continue
buffer += new_text
if len(buffer) > 1:
yield buffer
with gr.Blocks() as demo:
gr.HTML("<h1 class='gradio-heading'><center>MC-LLaVA 3B</center></h1>")
gr.HTML(
"<center><p class='gradio-sub-heading'>MC-LLaVA 3B is a model that can answer questions about small details in high-resolution images. </p></center>"
)
gr.HTML(
"<center><p class='gradio-sub-heading'>The magic of LLM happened when we can combine them with different data sources. We are able to search for object on images and get answer prepared by Large Language Model.</p></center>"
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Question", placeholder="e.g. What is this?", scale=4
)
submit = gr.Button(
"Submit",
scale=1,
)
with gr.Row():
max_crops = gr.Slider(minimum=0, maximum=200, step=5, value=0, label="Max crops")
num_tokens = gr.Slider(minimum=728, maximum=2184, step=10, value=728, label="Number of image tokens")
with gr.Row():
img = gr.Image(type="pil", label="Upload or Drag an Image")
output = gr.TextArea(label="Answer")
with gr.Row():
sample = gr.Checkbox(label="Sample", value=False)
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0, label="Temperature")
top_k = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Top-K")
submit.click(answer_question, [img, prompt, max_crops, num_tokens, sample, temperature, top_k], output)
prompt.submit(answer_question, [img, prompt, max_crops, num_tokens, sample, temperature, top_k], output)
demo.queue().launch(debug=True)