rvv-karma commited on
Commit
70ec316
·
1 Parent(s): 0e18c81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -17
app.py CHANGED
@@ -1,39 +1,34 @@
1
- # Human Action Recognition
2
 
3
- ## LOADING MODULES
4
 
 
5
 
 
6
  from transformers import pipeline
7
- # from PIL import Image
8
- # import requests
9
- import gradio as gr
10
-
11
  pipe = pipeline("image-classification", "rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224")
12
 
13
  def classify_image(input):
 
14
  predictions = pipe(image)
15
  return {prediction["label"]: prediction["score"] for prediction in predictions}
16
 
17
-
18
- # Output:
19
- # [{'score': 0.9918079972267151, 'label': 'dancing'},
20
- # {'score': 0.00207977625541389, 'label': 'clapping'},
21
- # {'score': 0.0015223610680550337, 'label': 'running'},
22
- # {'score': 0.0009153694845736027, 'label': 'fighting'},
23
- # {'score': 0.0006987180095165968, 'label': 'sitting'}]
24
 
 
25
 
26
  ex=[['cat2.jpg'],
27
  ['dog2.jpeg'],
28
  ['cat3.jpg'],
29
  ['dog.jpeg']]
30
 
 
 
31
  """
32
  ## RUNNING WEB UI"""
33
 
34
- image = gr.inputs.Image()
35
- label = gr.outputs.Label(num_top_classes=5)
36
 
37
- gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Human Action Recognition',
38
- height=600, width=1200, examples=ex, theme='peach').launch(debug=True)
39
 
 
 
 
1
+ # rvv-karma/Human-Action-Recognition
2
 
 
3
 
4
+ ## Creating prediction pipeline
5
 
6
+ from PIL import Image
7
  from transformers import pipeline
 
 
 
 
8
  pipe = pipeline("image-classification", "rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224")
9
 
10
  def classify_image(input):
11
+ image = Image.fromarray(input.astype('uint8'), 'RGB')
12
  predictions = pipe(image)
13
  return {prediction["label"]: prediction["score"] for prediction in predictions}
14
 
 
 
 
 
 
 
 
15
 
16
+ import gradio as gr
17
 
18
  ex=[['cat2.jpg'],
19
  ['dog2.jpeg'],
20
  ['cat3.jpg'],
21
  ['dog.jpeg']]
22
 
23
+ ex = []
24
+
25
  """
26
  ## RUNNING WEB UI"""
27
 
28
+ image = gr.Image()
29
+ label = gr.Label(num_top_classes=5)
30
 
31
+ description = "Categories: " + "'" + "', '".join(pipe.model.config.label2id.keys()) + "'"
 
32
 
33
+ gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Human Action Recognition',
34
+ description=description, examples=ex, theme='peach').launch(height=1000, width=1600, debug=True)