|
|
|
|
|
|
|
|
|
|
|
from PIL import Image |
|
from transformers import pipeline |
|
pipe = pipeline("image-classification", "rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224") |
|
|
|
def classify_image(input): |
|
image = Image.fromarray(input.astype('uint8'), 'RGB') |
|
predictions = pipe(image) |
|
return {prediction["label"]: prediction["score"] for prediction in predictions} |
|
|
|
|
|
|
|
import gradio as gr |
|
|
|
image = gr.Image() |
|
label = gr.Label(num_top_classes=5) |
|
|
|
description = "## Categories: \n" + ", ".join(pipe.model.config.label2id.keys()) |
|
examples = [["samples/cycling.jpg"], ["samples/dancing.webp"], ["samples/listening music.png"], ["samples/running.jpg"], ["samples/sleeping.webp"]] |
|
theme = gr.themes.Default(primary_hue="red", secondary_hue="pink") |
|
|
|
gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Human Action Recognition', |
|
description=description, examples=examples, theme=theme |
|
).launch(height=1000, width=1600, debug=True) |
|
|
|
|