File size: 19,735 Bytes
8c3e070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d27d1
 
8c3e070
 
 
 
 
 
 
 
090efb2
8c3e070
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import os
import shutil
import multiprocessing
import subprocess
import nltk
import gradio as gr
import matplotlib.pyplot as plt
import gc
from huggingface_hub import snapshot_download, hf_hub_download
from typing import List
import shutil
import numpy as np
import random
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, CLIPFeatureExtractor
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from moviepy.editor import VideoFileClip, CompositeVideoClip, TextClip
import moviepy.editor as mpy
from PIL import Image, ImageDraw, ImageFont
from mutagen.mp3 import MP3
from gtts import gTTS
from pydub import AudioSegment
import uuid
from safetensors.torch import load_file
import textwrap

# -------------------------------------------------------------------
# No more ImageMagick dependency!
# -------------------------------------------------------------------
print("ImageMagick dependency removed. Using Pillow for text rendering.")

# Ensure NLTK’s 'punkt_tab' (and other data) is present
nltk.download('punkt_tab', quiet=True)
nltk.download('punkt', quiet=True)

# -------------------------------------------------------------------
# GPU / Environment Setup
# -------------------------------------------------------------------
def log_gpu_memory():
    """Log GPU memory usage."""
    if torch.cuda.is_available():
        print(subprocess.check_output('nvidia-smi').decode('utf-8'))
    else:
        print("CUDA is not available. Cannot log GPU memory.")

def check_gpu_availability():
    """Print GPU availability and device details."""
    if torch.cuda.is_available():
        print(f"CUDA devices: {torch.cuda.device_count()}")
        print(f"Current device: {torch.cuda.current_device()}")
        print(torch.cuda.get_device_properties(torch.cuda.current_device()))
    else:
        print("CUDA is not available. Running on CPU.")

check_gpu_availability()

# Ensure proper multiprocessing start method
multiprocessing.set_start_method("spawn", force=True)

# -------------------------------------------------------------------
# Constants & Model Setup
# -------------------------------------------------------------------
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE_720 = 720 # Changed maximum image size to 720, now max resolution is 720p
MAX_IMAGE_SIZE = MAX_IMAGE_SIZE_720

RESOLUTIONS = {
  "16:9": [
    {"resolution": "360p", "width": 640, "height": 360},
    {"resolution": "480p", "width": 854, "height": 480},
    {"resolution": "720p", "width": 1280, "height": 720},
    #{"resolution": "1080p", "width": 1920, "height": 1080} # Commented out resolutions higher than 720p
  ],
  "4:3": [
    {"resolution": "360p", "width": 480, "height": 360},
    {"resolution": "480p", "width": 640, "height": 480},
    {"resolution": "720p", "width": 960, "height": 720},
    #{"resolution": "1080p", "width": 1440, "height": 1080} # Commented out resolutions higher than 720p
  ],
  "1:1": [
    {"resolution": "360p", "width": 360, "height": 360},
    {"resolution": "480p", "width": 480, "height": 480},
    {"resolution": "720p", "width": 720, "height": 720},
    #{"resolution": "1080p", "width": 1080, "height": 1080}, # Commented out resolutions higher than 720p
    #{"resolution": "1920p", "width": 1920, "height": 1920}  # Commented out resolutions higher than 720p
  ],
  "9:16": [
    {"resolution": "360p", "width": 360, "height": 640},
    {"resolution": "480p", "width": 480, "height": 854},
    {"resolution": "720p", "width": 720, "height": 1280},
    #{"resolution": "1080p", "width": 1080, "height": 1920} # Commented out resolutions higher than 720p
  ]}


DESCRIPTION = (
    "Video Story Generator with Audio\n"
    "PS: Generation of video by using Artificial Intelligence via AnimateDiff, DistilBART, and GTTS."
)
TITLE = "Video Story Generator with Audio (AnimateDiff, DistilBART, and GTTS)"

@spaces.GPU()
def load_text_summarization_model():
    """Load the tokenizer and model for text summarization on GPU/CPU."""
    print("Loading text summarization model...")
    tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
    model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
    return tokenizer, model

tokenizer, model = load_text_summarization_model()

# Base models for AnimateDiffLightning
bases = {
    "Cartoon": "frankjoshua/toonyou_beta6",
    "Realistic": "emilianJR/epiCRealism",
    "3d": "Lykon/DreamShaper",
    "Anime": "Yntec/mistoonAnime2"
}

# Keep track of what's loaded to avoid reloading each time
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None

# Initialize AnimateDiff pipeline
if not torch.cuda.is_available():
    raise NotImplementedError("No GPU detected!")

pipe = AnimateDiffPipeline.from_pretrained(
    bases[base_loaded],
    torch_dtype=dtype
).to(device)

pipe.scheduler = EulerDiscreteScheduler.from_config(
    pipe.scheduler.config,
    timestep_spacing="trailing",
    beta_schedule="linear"
)

feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")


# -------------------------------------------------------------------
# Function: Generate Short Animation
# -------------------------------------------------------------------
def generate_short_animation(
    prompt_text: str,
    base: str = "Realistic",
    motion: str = "",
    step: int = 4,
    seed: int = 42,
    width: int = 512,
    height: int = 512,
) -> str:
    """
    Generates a short animated video (MP4) from a given prompt using AnimateDiffLightning.
    Returns the local path to the resulting MP4.
    """
    global step_loaded
    global base_loaded
    global motion_loaded

    # 1) Possibly reload correct step weights
    if step_loaded != step:
        repo = "ByteDance/AnimateDiff-Lightning"
        ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
        pipe.unet.load_state_dict(
            load_file(hf_hub_download(repo, ckpt), device=device),
            strict=False
        )
        step_loaded = step

    # 2) Possibly reload the correct base model
    if base_loaded != base:
        pipe.unet.load_state_dict(
            torch.load(
                hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"),
                map_location=device
            ),
            strict=False
        )
        base_loaded = base

    # 3) Possibly unload/load motion LORA
    if motion_loaded != motion:
        pipe.unload_lora_weights()
        if motion:
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])  # weighting can be adjusted
        motion_loaded = motion

    # 4) Generate frames
    print(f"[INFO] Generating short animation for prompt: '{prompt_text}' ...")
    generator = torch.Generator(device=device).manual_seed(seed) if seed is not None else None
    output = pipe(
        prompt=prompt_text,
        guidance_scale=1.2,
        num_inference_steps=step,
        generator=generator,
        width=width,
        height=height
    )

    # 5) Export frames to a short MP4
    short_mp4_path = f"short_{uuid.uuid4().hex}.mp4"
    export_to_video(output.frames[0], short_mp4_path, fps=10)
    return short_mp4_path

# -------------------------------------------------------------------
# Function: Merge MP3 files
# -------------------------------------------------------------------
def merge_audio_files(mp3_names: List[str]) -> str:
    """
    Merges a list of MP3 files into a single MP3 file.
    Returns the path to the merged MP3 file.
    """
    combined = AudioSegment.empty()
    for f_name in mp3_names:
        audio = AudioSegment.from_mp3(f_name)
        combined += audio
    export_path = f"merged_audio_{uuid.uuid4().hex}.mp3" # Dynamic output path for merged audio
    combined.export(export_path, format="mp3")
    print(f"DEBUG: Audio files merged and saved to {export_path}")
    return export_path


# -------------------------------------------------------------------
# Function: Overlay Subtitles on a Video
# -------------------------------------------------------------------

def add_subtitles_to_video(input_video_path: str, text: str, duration: float) -> str:
    """
    Overlays `text` as subtitles over the entire `input_video_path` for `duration` seconds using Pillow.
    Returns the path to the newly generated MP4 with subtitles.
    """
    base_clip = VideoFileClip(input_video_path)
    final_dur = max(duration, base_clip.duration)

    def make_frame(t):
        frame_pil = Image.fromarray(base_clip.get_frame(t))
        draw = ImageDraw.Draw(frame_pil)
        try:
            font = ImageFont.truetype("arial.ttf", 40)  # Change the font size if needed
        except IOError:
            font = ImageFont.load_default()  # Use default font if Arial is not found

        # Correctly compute text size using `textbbox()`
        bbox = draw.textbbox((0, 0), text, font=font)
        textwidth, textheight = bbox[2] - bbox[0], bbox[3] - bbox[1]

        x = (frame_pil.width - textwidth) / 2
        y = frame_pil.height - 70 - textheight  # Position at the bottom

        draw.text((x, y), text, font=font, fill=(255, 255, 0))  # Yellow color
        return np.array(frame_pil)

    # Create the video clip without `size` argument
    subtitled_clip = mpy.VideoClip(make_frame, duration=final_dur)

    # Composite the subtitled clip over the original video
    final_clip = CompositeVideoClip([base_clip, subtitled_clip.set_position((0, 0))])
    final_clip = final_clip.set_duration(final_dur)

    out_path = f"sub_{uuid.uuid4().hex}.mp4"
    final_clip.write_videofile(out_path, fps=24, logger=None)

    # Cleanup
    base_clip.close()
    final_clip.close()
    subtitled_clip.close()

    return out_path



# -------------------------------------------------------------------
# Main Function: Generate Output Video
# -------------------------------------------------------------------
@spaces.GPU()
def get_output_video(text, base_model_name, motion_name, num_inference_steps_backend, randomize_seed, seed, width, height):
    """
    Summarize the user prompt, generate a short animated video for each sentence,
    overlay subtitles, merge all into a final video with a single audio track.
    """
    print("DEBUG: Starting get_output_video function...")

    # Summarize the input text
    print("DEBUG: Summarizing text...")
    device_local = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device_local)  # Move summarization model to GPU/CPU as needed

    inputs = tokenizer(
        text,
        max_length=1024,
        truncation=True,
        return_tensors="pt"
    ).to(device_local)

    summary_ids = model.generate(inputs["input_ids"])
    summary = tokenizer.batch_decode(
        summary_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )
    plot = list(summary[0].split('.'))  # Split summary into sentences
    print(f"DEBUG: Summary generated: {plot}")

    # Prepare seed based on randomize_seed checkbox
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else seed

    # We'll generate a short video for each sentence
    # We'll also create an audio track for each sentence
    short_videos = []
    mp3_names = []
    mp3_lengths = []
    result_no_audio = f"result_no_audio_{uuid.uuid4().hex}.mp4" # Dynamic filename for no audio video
    movie_final = f'result_final_{uuid.uuid4().hex}.mp4' # Dynamic filename for final video
    merged_audio_path = "" # To store merged audio path for cleanup

    try: # Try-finally block to ensure cleanup
        for i, sentence in enumerate(plot[:-1]):
            # 1) Generate short video for this sentence
            prompt_for_animation = f"Generate a realistic video about this: {sentence}"
            print(f"DEBUG: Generating short video {i+1} of {len(plot)-1} ...")
            short_mp4_path = generate_short_animation(
                prompt_text=prompt_for_animation,
                base=base_model_name,
                motion=motion_name,
                step=int(num_inference_steps_backend),
                seed=current_seed + i, # Increment seed for each sentence for variation
                width=width,
                height=height
            )

            # 2) Generate audio for the sentence
            audio_filename = f'audio_{uuid.uuid4().hex}_{i}.mp3' # Dynamic audio filename
            tts_obj = gTTS(text=sentence, lang='en', slow=False)
            tts_obj.save(audio_filename)
            audio_info = MP3(audio_filename)
            audio_duration = audio_info.info.length
            mp3_names.append(audio_filename)
            mp3_lengths.append(audio_duration)

            # 3) Overlay subtitles on top of the short video (using Pillow now)
            final_clip_duration = audio_duration + 0.5  # half-second pad
            short_subtitled_path = add_subtitles_to_video(
                input_video_path=short_mp4_path,
                text=sentence.strip(),
                duration=final_clip_duration
            )
            short_videos.append(short_subtitled_path)

            # Clean up the original short clip (no subtitles)
            os.remove(short_mp4_path)

        # ----------------------------------------------------------------
        # Merge all MP3 files into one
        # ----------------------------------------------------------------
        merged_audio_path = merge_audio_files(mp3_names)

        # ----------------------------------------------------------------
        # Concatenate all short subtitled videos
        # ----------------------------------------------------------------
        print("DEBUG: Concatenating all short videos into a single clip...")
        clip_objects = []
        for vid_path in short_videos:
            clip = mpy.VideoFileClip(vid_path)
            clip_objects.append(clip)

        final_concat = mpy.concatenate_videoclips(clip_objects, method="compose")
        final_concat.write_videofile(result_no_audio, fps=24, logger=None)

        # ----------------------------------------------------------------
        # Combine big video with merged audio
        # ----------------------------------------------------------------
        def combine_audio(vidname, audname, outname, fps=24):
            print(f"DEBUG: Combining audio for video: '{vidname}'")
            my_clip = mpy.VideoFileClip(vidname)
            audio_background = mpy.AudioFileClip(audname)
            final_clip = my_clip.set_audio(audio_background)
            final_clip.write_videofile(outname, fps=fps, logger=None)
            my_clip.close()
            final_clip.close()

        combine_audio(result_no_audio, merged_audio_path, movie_final)

    finally: # Cleanup always executes
        print("DEBUG: Cleaning up temporary files...")
        # Remove short subtitled videos
        for path_ in short_videos:
            os.remove(path_)
        # Remove mp3 segments
        for f_mp3 in mp3_names:
            os.remove(f_mp3)
        # Remove merged audio
        if os.path.exists(merged_audio_path):
            os.remove(merged_audio_path)
        # Remove partial no-audio mp4
        if os.path.exists(result_no_audio):
            os.remove(result_no_audio)

    print("DEBUG: get_output_video function completed successfully.")
    return movie_final

# -------------------------------------------------------------------
# Example text (user can override)
# -------------------------------------------------------------------
text = (
    "Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. "
    "Because today is her birthday and her friends come to her house and help her to prepare the cake."
)

# -------------------------------------------------------------------
# Gradio Interface
# -------------------------------------------------------------------
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(
        """
        # Video Generator ⚡ from stories with Artificial Intelligence

        A story can be input by user. The story is summarized using DistilBART model.
        Then, the images are generated by using AnimateDiff and AnimateDiff-Lightning,
        and the subtitles and audio are created using gTTS. These are combined to generate a video.

        **Credits**: Developed by [ruslanmv.com](https://ruslanmv.com).
        """
    )

    with gr.Group():
        with gr.Row():
            input_start_text = gr.Textbox(value=text, label='Prompt')
        with gr.Row():
            select_base = gr.Dropdown(
                label='Base model',
                choices=["Cartoon", "Realistic", "3d", "Anime"],
                value=base_loaded,
                interactive=True
            )
            select_motion = gr.Dropdown(
                label='Motion',
                choices=[
                    ("Default", ""),
                    ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                    ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                    ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                    ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                    ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                    ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                    ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                    ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                ],
                value="",  # default: no motion lora
                interactive=True
            )
            select_step = gr.Dropdown(
                label='Inference steps',
                choices=[('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8)],
                value=4,
                interactive=True
            )
            button_gen_video = gr.Button(
                scale=1,
                variant='primary',
                value="Generate Video"
            )

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE_720, # 제한 720 pixels maximum 사이즈, updated max size to 720p
                    step=1,
                    value=640, # Default width for 480p 4:3
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE_720, # 제한 720 pixels maximum 사이즈, updated max size to 720p
                    step=1,
                    value=480, # Default height for 480p 4:3
                )


        with gr.Column():
            #output_interpolation = gr.Video(label="Generated Video")
            output_interpolation = gr.Video(value="video.mp4", label="Generated Video")  # Set default video


    button_gen_video.click(
        fn=get_output_video,
        inputs=[input_start_text, select_base, select_motion, select_step, randomize_seed, seed, width, height],
        outputs=output_interpolation
    )



demo.queue().launch(debug=True, share=False)