Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import modin.pandas as pd | |
import numpy as np | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline | |
pipe = pipeline('text-generation', model='daspartho/prompt-extend') | |
def extend_prompt(prompt): | |
return pipe(prompt+',', num_return_sequences=1)[0]["generated_text"] | |
def text_it(inputs): | |
return extend_prompt(inputs) | |
def load_pipeline(use_cuda): | |
device = "cuda" if use_cuda and torch.cuda.is_available() else "cpu" | |
if device == "cuda": | |
torch.cuda.max_memory_allocated(device=device) | |
torch.cuda.empty_cache() | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
torch.cuda.empty_cache() | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
return pipe | |
def genie(prompt="sexy woman", use_details=True,steps=2, seed=398231747038484200, use_cuda=False): | |
pipe = load_pipeline(use_cuda) | |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) | |
if use_details: | |
extended_prompt = extend_prompt(prompt) | |
else: | |
extended_prompt=prompt | |
int_image = pipe(prompt=extended_prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0] | |
return int_image, extended_prompt | |
# Custom HTML for the interface | |
html_code = ''' | |
<style> | |
body { | |
background-color: #F0F0F0; | |
} | |
</style> | |
<h1 style="color:black; text-align:center;">Stable Diffusion Turbo with GPT</h1> | |
''' | |
with gr.Blocks() as myface: | |
gr.HTML(html_code) # Add the custom HTML | |
with gr.Row(): | |
input_text = gr.Textbox(label='Text prompt.', lines=1) | |
with gr.Row(): | |
details_checkbox = gr.Checkbox(label="details", info="Generate Details?") | |
steps_slider = gr.Slider(1, maximum=5, value=2, step=1, label='Number of Iterations') | |
seed_slider = gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=False, value=398231747038484200) | |
cuda_checkbox = gr.Checkbox(label="cuda", info="Do you have cuda?") | |
with gr.Row(): | |
generate_button = gr.Button("Generate") | |
with gr.Row(): | |
output_image1 = gr.Image() | |
output_image2 = gr.Image() | |
with gr.Row(): | |
output_text1 = gr.Textbox(label="Generated Text", lines=2) | |
output_text2 = gr.Textbox(label="Generated Text", lines=2) | |
with gr.Row(): | |
output_image3 = gr.Image() | |
output_image4 = gr.Image() | |
with gr.Row(): | |
output_text3 = gr.Textbox(label="Generated Text", lines=2) | |
output_text4 = gr.Textbox(label="Generated Text", lines=2) | |
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image1, output_text1], concurrency_limit=10) | |
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image2, output_text2], concurrency_limit=10) | |
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image3, output_text3], concurrency_limit=10) | |
generate_button.click(genie, inputs=[input_text, details_checkbox, steps_slider, seed_slider, cuda_checkbox], outputs=[output_image4, output_text4], concurrency_limit=10) | |
myface.launch(inline=True, show_api=False, max_threads=200) | |