Spaces:
Sleeping
Sleeping
File size: 10,911 Bytes
5798cfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import json
from collections import deque
from dotenv import load_dotenv
import gradio as gr
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from openai import OpenAI
import tempfile
import time
# Load environment variables
load_dotenv()
# Function to read questions from JSON
def read_questions_from_json(file_path):
if not os.path.exists(file_path):
raise FileNotFoundError(f"The file '{file_path}' does not exist.")
with open(file_path, 'r') as f:
questions_list = json.load(f)
if not questions_list:
raise ValueError("The JSON file is empty or has invalid content.")
return questions_list
# Function to convert text to speech
def convert_text_to_speech(text):
start_time = time.time()
try:
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
response = client.audio.speech.create(model="tts-1", voice="alloy", input=text)
# Save the audio stream to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
for chunk in response.iter_bytes():
tmp_file.write(chunk)
temp_audio_path = tmp_file.name
print(f"DEBUG - Text-to-speech conversion time: {time.time() - start_time:.2f} seconds")
return temp_audio_path
except Exception as e:
print(f"Error during text-to-speech conversion: {e}")
return None
# Function to transcribe audio
def transcribe_audio(audio_file_path):
start_time = time.time()
try:
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
with open(audio_file_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
print(f"DEBUG - Audio transcription time: {time.time() - start_time:.2f} seconds")
return transcription.text
except Exception as e:
print(f"Error during audio transcription: {e}")
return None
# Conduct interview and handle user input
def conduct_interview(questions, language="English", history_limit=5):
start_time = time.time()
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise RuntimeError("OpenAI API key not found. Please add it to your .env file as OPENAI_API_KEY.")
chat = ChatOpenAI(
openai_api_key=openai_api_key, model="gpt-4o", temperature=0.7, max_tokens=750
)
conversation_history = deque(maxlen=history_limit)
system_prompt = (f"You are Sarah, an empathetic HR interviewer conducting a technical interview in {language}. "
"Respond to user follow-up questions politely and concisely. If the user is confused, provide clear clarification.")
interview_data = []
current_question_index = [0] # Use a list to hold the index
is_interview_finished = False
initial_message = ("👋 Hi there, I'm Sarah, your friendly AI HR assistant! "
"I'll guide you through a series of interview questions to learn more about you. "
"Take your time and answer each question thoughtfully.")
final_message = "That wraps up our interview. Thank you so much for your responses—it's been great learning more about you!"
print(f"DEBUG - conduct_interview setup time: {time.time() - start_time:.2f} seconds")
def interview_step(user_input, audio_input, history):
nonlocal current_question_index
nonlocal is_interview_finished
step_start_time = time.time()
# Transcribe audio input if provided
if audio_input:
user_input = transcribe_audio(audio_input)
print("Transcription:", user_input)
if user_input.lower() in ["exit", "quit"]:
history.append({"role": "assistant", "content": "The interview has ended at your request. Thank you for your time!"})
is_interview_finished = True
return history, "", None
# If interview is finished, do nothing
if is_interview_finished:
return history, "", None
question_text = questions[current_question_index[0]]
history_content = "\n".join([f"Q: {entry['question']}\nA: {entry['answer']}" for entry in conversation_history])
combined_prompt = (f"{system_prompt}\n\nPrevious conversation history:\n{history_content}\n\n"
f"Current question: {question_text}\nUser's input: {user_input}\n\n"
"Respond in a warm and conversational way, offering natural follow-ups if needed.")
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=combined_prompt)
]
chat_start_time = time.time()
response = chat.invoke(messages)
print(f"DEBUG - Chat response time: {time.time() - chat_start_time:.2f} seconds")
response_content = response.content.strip()
# Convert response to speech
audio_file_path = convert_text_to_speech(response_content)
conversation_history.append({"question": question_text, "answer": user_input})
interview_data.append({"question": question_text, "answer": user_input})
# Use the correct format for messages
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": response_content})
if current_question_index[0] + 1 < len(questions):
current_question_index[0] += 1
next_question = f"Alright, let's move on. {questions[current_question_index[0]]}"
next_question_audio_path = convert_text_to_speech(next_question)
history.append({"role": "assistant", "content": next_question})
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
return history, "", next_question_audio_path
else:
# Convert final message to speech and play it
final_message_audio_path = convert_text_to_speech(final_message)
history.append({"role": "assistant", "content": final_message})
# Convert the last question to speech
last_question_audio_path = convert_text_to_speech(questions[current_question_index[0]])
is_interview_finished = True
print(f"DEBUG - Interview step time: {time.time() - step_start_time:.2f} seconds")
return history, "", last_question_audio_path
return interview_step, initial_message, final_message
# Gradio interface
def main():
QUESTIONS_FILE_PATH = "questions.json" # Ensure you have a questions.json file with your interview questions
try:
questions = read_questions_from_json(QUESTIONS_FILE_PATH)
interview_func, initial_message, final_message = conduct_interview(questions)
css = """
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
.chatbot { flex-grow: 1; overflow: auto; height: 100px; }
.chatbot .wrap.svelte-1275q59.wrap.svelte-1275q59 {flex-wrap : nowrap !important}
.user > div > .message {background-color : #dcf8c6 !important}
.bot > div > .message {background-color : #f7f7f8 !important}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("""
<h1 style='text-align: center; margin-bottom: 1rem'>👋 Welcome to Your AI HR Interview Assistant</h1>
""")
start_btn = gr.Button("Start Interview", variant="primary")
gr.Markdown("""
<p style='text-align: center; margin-bottom: 1rem'>I will ask you a series of questions. Please answer honestly and thoughtfully. When you are ready, click "Start Interview" to begin.</p>
""")
chatbot = gr.Chatbot(label="Interview Chat", elem_id="chatbot", height=650, type='messages')
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Your Answer")
user_input = gr.Textbox(label="Your Response", placeholder="Type your answer here or use the microphone...", lines=1)
audio_output = gr.Audio(label="Response Audio", autoplay=True)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear Chat")
def start_interview():
history = []
# Convert and play initial message
start_time = time.time()
initial_audio_path = convert_text_to_speech(initial_message)
# Combine initial message and first question
first_question = "Let's begin! Here's your first question: " + questions[0]
combined_message = initial_message + " " + first_question
# Convert combined message to speech
combined_audio_path = convert_text_to_speech(combined_message)
history.append({"role": "assistant", "content": combined_message})
print(f"DEBUG - Initial message audio time: {time.time() - start_time:.2f} seconds")
return history, "", combined_audio_path
def clear_interview():
# Reset the interview state
interview_func, initial_message, final_message = conduct_interview(questions)
return [], "", None
def interview_step_wrapper(user_response, audio_response, history):
history, _, audio_path = interview_func(user_response, audio_response, history)
time.sleep(0.1) # Reduced delay
return history, "", audio_path
def on_enter_submit(history, user_response):
if not user_response.strip():
return history, "", None
history, _, audio_path = interview_step_wrapper(user_response, None, history)
time.sleep(0.1) # Reduced delay
return history, "", audio_path
audio_input.stop_recording(interview_step_wrapper, inputs=[user_input, audio_input, chatbot], outputs=[chatbot, user_input, audio_output])
start_btn.click(start_interview, inputs=[], outputs=[chatbot, user_input, audio_output])
submit_btn.click(interview_step_wrapper, inputs=[user_input, audio_input, chatbot], outputs=[chatbot, user_input, audio_output])
user_input.submit(on_enter_submit, inputs=[chatbot, user_input], outputs=[chatbot, user_input, audio_output])
clear_btn.click(clear_interview, inputs=[], outputs=[chatbot, user_input, audio_output])
demo.launch()
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
main() |