clip_gpt2 / neuralnet /utils.py
rushil78's picture
Duplicate from Vageesh1/clip_gpt2
f55b152
import torch
import torchvision.transforms as transforms
from PIL import Image
def print_examples(model, device, vocab):
transform = transforms.Compose(
[transforms.Resize((299, 299)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
model.eval()
test_img1 = transform(Image.open("./test_examples/dog.png").convert("RGB")).unsqueeze(0)
print("dog.png PREDICTION: " + " ".join(model.caption_image(test_img1.to(device), vocab)))
test_img2 = transform(Image.open("./test_examples/dirt_bike.png").convert("RGB")).unsqueeze(0)
print("dirt_bike.png PREDICTION: " + " ".join(model.caption_image(test_img2.to(device), vocab)))
test_img3 = transform(Image.open("./test_examples/surfing.png").convert("RGB")).unsqueeze(0)
print("wave.png PREDICTION: " + " ".join(model.caption_image(test_img3.to(device), vocab)))
test_img4 = transform(Image.open("./test_examples/horse.png").convert("RGB")).unsqueeze(0)
print("horse.png PREDICTION: " + " ".join(model.caption_image(test_img4.to(device), vocab)))
test_img5 = transform(Image.open("./test_examples/camera.png").convert("RGB")).unsqueeze(0)
print("camera.png PREDICTION: " + " ".join(model.caption_image(test_img5.to(device), vocab)))
model.train()
def save_checkpoint(state, filename="/content/drive/MyDrive/checkpoints/Seq2Seq.pt"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model, optimizer):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
step = checkpoint["step"]
return step