|
import clip |
|
import os |
|
from torch import nn |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as nnf |
|
import sys |
|
from typing import Tuple, List, Union, Optional |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
|
from tqdm import tqdm, trange |
|
import skimage.io as io |
|
import PIL.Image |
|
|
|
|
|
N = type(None) |
|
V = np.array |
|
ARRAY = np.ndarray |
|
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] |
|
VS = Union[Tuple[V, ...], List[V]] |
|
VN = Union[V, N] |
|
VNS = Union[VS, N] |
|
T = torch.Tensor |
|
TS = Union[Tuple[T, ...], List[T]] |
|
TN = Optional[T] |
|
TNS = Union[Tuple[TN, ...], List[TN]] |
|
TSN = Optional[TS] |
|
TA = Union[T, ARRAY] |
|
|
|
|
|
D = torch.device |
|
|
|
def get_device(device_id: int) -> D: |
|
if not torch.cuda.is_available(): |
|
return CPU |
|
device_id = min(torch.cuda.device_count() - 1, device_id) |
|
return torch.device(f'cuda:{device_id}') |
|
|
|
|
|
CUDA = get_device |
|
|
|
current_directory = os.getcwd() |
|
save_path = os.path.join(os.path.dirname(current_directory), "pretrained_models") |
|
os.makedirs(save_path, exist_ok=True) |
|
model_path = os.path.join(save_path, 'model_wieghts.pt') |
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
def forward(self, x: T) -> T: |
|
return self.model(x) |
|
|
|
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): |
|
super(MLP, self).__init__() |
|
layers = [] |
|
for i in range(len(sizes) -1): |
|
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) |
|
if i < len(sizes) - 2: |
|
layers.append(act()) |
|
self.model = nn.Sequential(*layers) |
|
|
|
class ClipCaptionModel(nn.Module): |
|
|
|
|
|
def get_dummy_token(self, batch_size: int, device: D) -> T: |
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
|
|
|
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): |
|
embedding_text = self.gpt.transformer.wte(tokens) |
|
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) |
|
|
|
|
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
|
if labels is not None: |
|
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) |
|
labels = torch.cat((dummy_token, tokens), dim=1) |
|
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) |
|
return out |
|
|
|
def __init__(self, prefix_length: int, prefix_size: int = 512): |
|
super(ClipCaptionModel, self).__init__() |
|
self.prefix_length = prefix_length |
|
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') |
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
|
if prefix_length > 10: |
|
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) |
|
else: |
|
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) |
|
|
|
|
|
class ClipCaptionPrefix(ClipCaptionModel): |
|
|
|
def parameters(self, recurse: bool = True): |
|
return self.clip_project.parameters() |
|
|
|
def train(self, mode: bool = True): |
|
super(ClipCaptionPrefix, self).train(mode) |
|
self.gpt.eval() |
|
return self |
|
|
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
|
entry_length=67, temperature=1., stop_token: str = '.'): |
|
|
|
model.eval() |
|
stop_token_index = tokenizer.encode(stop_token)[0] |
|
tokens = None |
|
scores = None |
|
device = next(model.parameters()).device |
|
seq_lengths = torch.ones(beam_size, device=device) |
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
|
with torch.no_grad(): |
|
if embed is not None: |
|
generated = embed |
|
else: |
|
if tokens is None: |
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
|
tokens = tokens.unsqueeze(0).to(device) |
|
generated = model.gpt.transformer.wte(tokens) |
|
for i in range(entry_length): |
|
outputs = model.gpt(inputs_embeds=generated) |
|
logits = outputs.logits |
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|
logits = logits.softmax(-1).log() |
|
if scores is None: |
|
scores, next_tokens = logits.topk(beam_size, -1) |
|
generated = generated.expand(beam_size, *generated.shape[1:]) |
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
|
if tokens is None: |
|
tokens = next_tokens |
|
else: |
|
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
|
else: |
|
logits[is_stopped] = -float(np.inf) |
|
logits[is_stopped, 0] = 0 |
|
scores_sum = scores[:, None] + logits |
|
seq_lengths[~is_stopped] += 1 |
|
scores_sum_average = scores_sum / seq_lengths[:, None] |
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
|
next_tokens_source = next_tokens // scores_sum.shape[1] |
|
seq_lengths = seq_lengths[next_tokens_source] |
|
next_tokens = next_tokens % scores_sum.shape[1] |
|
next_tokens = next_tokens.unsqueeze(1) |
|
tokens = tokens[next_tokens_source] |
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
|
generated = generated[next_tokens_source] |
|
scores = scores_sum_average * seq_lengths |
|
is_stopped = is_stopped[next_tokens_source] |
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
|
generated = torch.cat((generated, next_token_embed), dim=1) |
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
|
if is_stopped.all(): |
|
break |
|
scores = scores / seq_lengths |
|
output_list = tokens.cpu().numpy() |
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
|
order = scores.argsort(descending=True) |
|
output_texts = [output_texts[i] for i in order] |
|
return output_texts |
|
|
|
def generate2( |
|
model, |
|
tokenizer, |
|
tokens=None, |
|
prompt=None, |
|
embed=None, |
|
entry_count=1, |
|
entry_length=67, |
|
top_p=0.8, |
|
temperature=1., |
|
stop_token: str = '.', |
|
): |
|
model.eval() |
|
generated_num = 0 |
|
generated_list = [] |
|
stop_token_index = tokenizer.encode(stop_token)[0] |
|
filter_value = -float("Inf") |
|
device = next(model.parameters()).device |
|
|
|
with torch.no_grad(): |
|
|
|
for entry_idx in trange(entry_count): |
|
if embed is not None: |
|
generated = embed |
|
else: |
|
if tokens is None: |
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
|
tokens = tokens.unsqueeze(0).to(device) |
|
|
|
generated = model.gpt.transformer.wte(tokens) |
|
|
|
for i in range(entry_length): |
|
|
|
outputs = model.gpt(inputs_embeds=generated) |
|
logits = outputs.logits |
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ |
|
..., :-1 |
|
].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
|
logits[:, indices_to_remove] = filter_value |
|
next_token = torch.argmax(logits, -1).unsqueeze(0) |
|
next_token_embed = model.gpt.transformer.wte(next_token) |
|
if tokens is None: |
|
tokens = next_token |
|
else: |
|
tokens = torch.cat((tokens, next_token), dim=1) |
|
generated = torch.cat((generated, next_token_embed), dim=1) |
|
if stop_token_index == next_token.item(): |
|
break |
|
|
|
output_list = list(tokens.squeeze().cpu().numpy()) |
|
output_text = tokenizer.decode(output_list) |
|
generated_list.append(output_text) |
|
|
|
return generated_list[0] |
|
|