File size: 3,224 Bytes
f55b152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch 
import clip
import PIL.Image
from PIL import Image
import skimage.io as io
import streamlit as st
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel
from model import generate2,ClipCaptionModel
from engine import inference


model_trained = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
model_trained.load_state_dict(torch.load('model_trained.pth',map_location=torch.device('cpu')),strict=False)
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer       = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

def show_n_generate(img, model, greedy = True):
    image = Image.open(img)
    pixel_values   = image_processor(image, return_tensors ="pt").pixel_values

    if greedy:
        generated_ids  = model.generate(pixel_values, max_new_tokens = 30)
    else:
        generated_ids  = model.generate(
            pixel_values,
            do_sample=True,
            max_new_tokens = 30,
            top_k=5)
    generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return generated_text

device =  "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

prefix_length = 10

model = ClipCaptionModel(prefix_length)

model.load_state_dict(torch.load('model.h5',map_location=torch.device('cpu')),strict=False) 

model = model.eval() 

coco_model = ClipCaptionModel(prefix_length)
coco_model.load_state_dict(torch.load('COCO_model.h5',map_location=torch.device('cpu')),strict=False)
model = model.eval()  


def ui():
    st.markdown("# Image Captioning")
    # st.markdown("## Done By- Vageesh and Rushil")
    uploaded_file = st.file_uploader("Upload an Image", type=['png', 'jpeg', 'jpg'])

    if uploaded_file is not None:
        image = io.imread(uploaded_file)
        pil_image = PIL.Image.fromarray(image)
        image = preprocess(pil_image).unsqueeze(0).to(device)

        option = st.selectbox('Please select the Model',('Clip Captioning','Attention Decoder','VIT+GPT2'))

        if option=='Clip Captioning':
            with torch.no_grad():
                prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
                prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
            generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)

            st.image(uploaded_file, width = 500, channels = 'RGB')
            st.markdown("**PREDICTION:** " + generated_text_prefix)
        elif option=='Attention Decoder': 
            out = inference(uploaded_file)
            st.image(uploaded_file, width = 500, channels = 'RGB')
            st.markdown("**PREDICTION:** " + out)

        # elif option=='VIT+GPT2': 
        #     out=show_n_generate(uploaded_file, greedy = False, model = model_trained)
        #     st.image(uploaded_file, width = 500, channels = 'RGB')
        #     st.markdown("**PREDICTION:** " + out)
            


if __name__ == '__main__':
    ui()