Spaces:
Running
Running
updated prediction finding
Browse files
app.py
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
-
# Load your models
|
5 |
-
# Adjust these lines according to how your models are set up
|
6 |
roberta_base_detector = pipeline("text-classification", model="Models/fine_tuned/roberta-base-openai-detector-model", tokenizer="Models/fine_tuned/roberta-base-openai-detector-tokenizer")
|
7 |
chatgpt_lli_hc3_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-lli-hc3-model", tokenizer="Models/fine_tuned/chatgpt-detector-lli-hc3-tokenizer")
|
8 |
chatgpt_roberta_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-roberta-model", tokenizer="Models/fine_tuned/chatgpt-detector-roberta-tokenizer")
|
9 |
|
10 |
def classify_text(text):
|
11 |
# Get predictions from each model
|
12 |
-
roberta_base_pred = roberta_base_detector(text)[0]['label']
|
13 |
-
chatgpt_lli_hc3_pred = chatgpt_lli_hc3_detector(text)[0]['label']
|
14 |
-
chatgpt_roberta_pred = chatgpt_roberta_detector(text)[0]['label']
|
15 |
|
16 |
# Count the votes for AI and Human
|
17 |
votes = {"AI": 0, "Human": 0}
|
18 |
for pred in [roberta_base_pred, chatgpt_lli_hc3_pred, chatgpt_roberta_pred]:
|
19 |
-
if pred ==
|
20 |
votes["AI"] += 1
|
21 |
else:
|
22 |
votes["Human"] += 1
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
|
|
|
|
|
6 |
roberta_base_detector = pipeline("text-classification", model="Models/fine_tuned/roberta-base-openai-detector-model", tokenizer="Models/fine_tuned/roberta-base-openai-detector-tokenizer")
|
7 |
chatgpt_lli_hc3_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-lli-hc3-model", tokenizer="Models/fine_tuned/chatgpt-detector-lli-hc3-tokenizer")
|
8 |
chatgpt_roberta_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-roberta-model", tokenizer="Models/fine_tuned/chatgpt-detector-roberta-tokenizer")
|
9 |
|
10 |
def classify_text(text):
|
11 |
# Get predictions from each model
|
12 |
+
roberta_base_pred = np.argmax(roberta_base_detector(text)[0]['label'].to('cpu'))
|
13 |
+
chatgpt_lli_hc3_pred = np.argmax(chatgpt_lli_hc3_detector(text)[0]['label'].to('cpu'))
|
14 |
+
chatgpt_roberta_pred = np.argmax(chatgpt_roberta_detector(text)[0]['label'].to('cpu'))
|
15 |
|
16 |
# Count the votes for AI and Human
|
17 |
votes = {"AI": 0, "Human": 0}
|
18 |
for pred in [roberta_base_pred, chatgpt_lli_hc3_pred, chatgpt_roberta_pred]:
|
19 |
+
if pred == 1:
|
20 |
votes["AI"] += 1
|
21 |
else:
|
22 |
votes["Human"] += 1
|