rusen commited on
Commit
4b0a2c8
·
1 Parent(s): d77e0e4

updated prediction finding

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -1,22 +1,22 @@
1
  import gradio as gr
2
  from transformers import pipeline
 
 
3
 
4
- # Load your models
5
- # Adjust these lines according to how your models are set up
6
  roberta_base_detector = pipeline("text-classification", model="Models/fine_tuned/roberta-base-openai-detector-model", tokenizer="Models/fine_tuned/roberta-base-openai-detector-tokenizer")
7
  chatgpt_lli_hc3_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-lli-hc3-model", tokenizer="Models/fine_tuned/chatgpt-detector-lli-hc3-tokenizer")
8
  chatgpt_roberta_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-roberta-model", tokenizer="Models/fine_tuned/chatgpt-detector-roberta-tokenizer")
9
 
10
  def classify_text(text):
11
  # Get predictions from each model
12
- roberta_base_pred = roberta_base_detector(text)[0]['label']
13
- chatgpt_lli_hc3_pred = chatgpt_lli_hc3_detector(text)[0]['label']
14
- chatgpt_roberta_pred = chatgpt_roberta_detector(text)[0]['label']
15
 
16
  # Count the votes for AI and Human
17
  votes = {"AI": 0, "Human": 0}
18
  for pred in [roberta_base_pred, chatgpt_lli_hc3_pred, chatgpt_roberta_pred]:
19
- if pred == "AI":
20
  votes["AI"] += 1
21
  else:
22
  votes["Human"] += 1
 
1
  import gradio as gr
2
  from transformers import pipeline
3
+ import numpy as np
4
+
5
 
 
 
6
  roberta_base_detector = pipeline("text-classification", model="Models/fine_tuned/roberta-base-openai-detector-model", tokenizer="Models/fine_tuned/roberta-base-openai-detector-tokenizer")
7
  chatgpt_lli_hc3_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-lli-hc3-model", tokenizer="Models/fine_tuned/chatgpt-detector-lli-hc3-tokenizer")
8
  chatgpt_roberta_detector = pipeline("text-classification", model="Models/fine_tuned/chatgpt-detector-roberta-model", tokenizer="Models/fine_tuned/chatgpt-detector-roberta-tokenizer")
9
 
10
  def classify_text(text):
11
  # Get predictions from each model
12
+ roberta_base_pred = np.argmax(roberta_base_detector(text)[0]['label'].to('cpu'))
13
+ chatgpt_lli_hc3_pred = np.argmax(chatgpt_lli_hc3_detector(text)[0]['label'].to('cpu'))
14
+ chatgpt_roberta_pred = np.argmax(chatgpt_roberta_detector(text)[0]['label'].to('cpu'))
15
 
16
  # Count the votes for AI and Human
17
  votes = {"AI": 0, "Human": 0}
18
  for pred in [roberta_base_pred, chatgpt_lli_hc3_pred, chatgpt_roberta_pred]:
19
+ if pred == 1:
20
  votes["AI"] += 1
21
  else:
22
  votes["Human"] += 1