runebloodstone commited on
Commit
e7c98db
·
verified ·
1 Parent(s): 1ee64b6

Change to accept kindroid requests

Browse files
Files changed (1) hide show
  1. app.py +39 -40
app.py CHANGED
@@ -1,43 +1,53 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
 
43
  """
@@ -48,18 +58,7 @@ image_gen_prompt = "Create a series of descriptive image prompts for an LLM (Lar
48
 
49
  demo = gr.ChatInterface(
50
  respond,
51
- additional_inputs=[
52
- gr.Textbox(value=image_gen_prompt, label="System message"),
53
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
- gr.Slider(
56
- minimum=0.1,
57
- maximum=1.0,
58
- value=0.95,
59
- step=0.05,
60
- label="Top-p (nucleus sampling)",
61
- ),
62
- ],
63
  )
64
 
65
  if __name__ == "__main__":
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import requests
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
8
+ ##lient = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
10
+ # Base URL
11
 
12
+ # Define our API endpoint and authentication token
13
+ BASE_URL = "https://api.kindroid.ai/v1"
14
+ SEND_MESSAGE_URL = "https://api.kindroid.ai/v1/send-message"
15
+ AUTH_TOKEN = "my token here"
16
+ JESS_ID = "jesskinid"
 
 
 
 
17
 
18
+ # Prepare the headers for our request
19
+ # The Authorization header uses the Bearer authentication scheme
20
+ # Content-Type is set to application/json since we're sending JSON data
21
+ headers = {
22
+ "Authorization": f"Bearer {AUTH_TOKEN}",
23
+ "Content-Type": "application/json"
24
+ }
25
 
26
+ # Prepare the data we want to send
27
+ # This follows the required format with ai_id and message fields
28
+ payload = {
29
+ "ai_id": "example_ai",
30
+ "message": "Hello from Python!"
31
+ }
32
 
33
+ def respond(message):
34
+ try:
35
+ # Make the POST request to the API
36
+ # We pass our payload as json parameter so requests will automatically
37
+ # handle the JSON serialization for us
38
+ response = requests.post(API_URL, headers=headers, json=payload)
39
+
40
+ # Check if the request was successful (status code 200-299)
41
+ response.raise_for_status()
42
+
43
+ # Print the response from the server
44
+ # The .json() method automatically parses the JSON response
45
+ print("Response received:")
46
+ print(response.json())
47
 
48
+ except requests.exceptions.RequestException as e:
49
+ # Handle any errors that might occur during the request
50
+ print(f"An error occurred: {e}")
 
 
 
 
 
 
 
 
51
 
52
 
53
  """
 
58
 
59
  demo = gr.ChatInterface(
60
  respond,
61
+ additional_inputs=[],
 
 
 
 
 
 
 
 
 
 
 
62
  )
63
 
64
  if __name__ == "__main__":