Spaces:
Runtime error
Runtime error
File size: 19,811 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import torch
import numpy as np
import pickle as pkl
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
# from priors.pose_prior_35 import Prior
# from priors.tiger_pose_prior.tiger_pose_prior import GaussianMixturePrior
from priors.normalizing_flow_prior.normalizing_flow_prior import NormalizingFlowPrior
from priors.shape_prior import ShapePrior
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, batch_rot2aa
# from configs.SMAL_configs import SMAL_MODEL_DATA_PATH, UNITY_SMAL_SHAPE_PRIOR_DOGS, SMAL_MODEL_TYPE
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from priors.helper_3dcgmodel_loss import load_dog_betas_for_3dcgmodel_loss
from combined_model.loss_utils.loss_utils_gc import calculate_plane_errors_batch
class Loss(torch.nn.Module):
def __init__(self, smal_model_type, data_info, nf_version=None):
super(Loss, self).__init__()
self.criterion_regr = torch.nn.MSELoss() # takes the mean
self.criterion_class = torch.nn.CrossEntropyLoss()
self.data_info = data_info
self.register_buffer('keypoint_weights', torch.tensor(data_info.keypoint_weights)[None, :])
self.l_anchor = None
self.l_pos = None
self.l_neg = None
self.smal_model_type = smal_model_type
self.smal_model_data_path = SMAL_MODEL_CONFIG[self.smal_model_type]['smal_model_data_path']
self.unity_smal_shape_prior_dogs = SMAL_MODEL_CONFIG[self.smal_model_type]['unity_smal_shape_prior_dogs']
if nf_version is not None:
self.normalizing_flow_pose_prior = NormalizingFlowPrior(nf_version=nf_version)
self.shape_prior = ShapePrior(self.smal_model_data_path) # here we just need mean and cov
self.criterion_triplet = torch.nn.TripletMarginLoss(margin=1)
# load 3d data for the unity dogs (an optional shape prior for 11 breeds)
if self.unity_smal_shape_prior_dogs is not None:
self.dog_betas_unity = load_dog_betas_for_3dcgmodel_loss(self.unity_smal_shape_prior_dogs, self.smal_model_type)
else:
self.dog_betas_unity = None
remeshing_path = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/smal_data_remeshed/uniform_surface_sampling/my_smpl_39dogsnorm_Jr_4_dog_remesh4000_info.pkl'
with open(remeshing_path, 'rb') as fp:
self.remeshing_dict = pkl.load(fp)
self.remeshing_relevant_faces = torch.tensor(self.remeshing_dict['smal_faces'][self.remeshing_dict['faceid_closest']], dtype=torch.long)
self.remeshing_relevant_barys = torch.tensor(self.remeshing_dict['barys_closest'], dtype=torch.float32)
def prepare_anchor_pos_neg(self, batch_size, device):
l0 = np.arange(0, batch_size, 2)
l_anchor = []
l_pos = []
l_neg = []
for ind in l0:
xx = set(np.arange(0, batch_size))
xx.discard(ind)
xx.discard(ind+1)
for ind2 in xx:
if ind2 % 2 == 0:
l_anchor.append(ind)
l_pos.append(ind + 1)
else:
l_anchor.append(ind + 1)
l_pos.append(ind)
l_neg.append(ind2)
self.l_anchor = torch.Tensor(l_anchor).to(torch.int64).to(device)
self.l_pos = torch.Tensor(l_pos).to(torch.int64).to(device)
self.l_neg = torch.Tensor(l_neg).to(torch.int64).to(device)
return
def forward(self, output_reproj, target_dict, weight_dict=None):
# output_reproj: ['vertices_smal', 'keyp_3d', 'keyp_2d', 'silh_image']
# target_dict: ['index', 'center', 'scale', 'pts', 'tpts', 'target_weight']
batch_size = output_reproj['keyp_2d'].shape[0]
device = output_reproj['keyp_2d'].device
# loss on reprojected keypoints
output_kp_resh = (output_reproj['keyp_2d']).reshape((-1, 2))
target_kp_resh = (target_dict['tpts'][:, :, :2] / 64. * (256. - 1)).reshape((-1, 2))
weights_resh = target_dict['tpts'][:, :, 2].reshape((-1))
keyp_w_resh = self.keypoint_weights.repeat((batch_size, 1)).reshape((-1))
loss_keyp = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt()*weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / \
max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5)
# loss on reprojected silhouette
assert output_reproj['silh'].shape == (target_dict['silh'][:, None, :, :]).shape
silh_loss_type = 'default'
if silh_loss_type == 'default':
with torch.no_grad():
thr_silh = 20
diff = torch.norm(output_kp_resh - target_kp_resh, dim=1)
diff_x = diff.reshape((batch_size, -1))
weights_resh_x = weights_resh.reshape((batch_size, -1))
unweighted_kp_mean_dist = (diff_x * weights_resh_x).sum(dim=1) / ((weights_resh_x).sum(dim=1)+1e-6)
loss_silh_bs = ((output_reproj['silh'] - target_dict['silh'][:, None, :, :]) ** 2).sum(axis=3).sum(axis=2).sum(axis=1) / (output_reproj['silh'].shape[2]*output_reproj['silh'].shape[3])
loss_silh = loss_silh_bs[unweighted_kp_mean_dist<thr_silh].sum() / batch_size
else:
print('silh_loss_type: ' + silh_loss_type)
raise ValueError
# shape regularization
# 'smal': loss on betas (pca coefficients), betas should be close to 0
# 'limbs...' loss on selected betas_limbs
loss_shape_weighted_list = [torch.zeros((1), device=device).mean().to(output_reproj['keyp_2d'].device)]
for ind_sp, sp in enumerate(weight_dict['shape_options']):
weight_sp = weight_dict['shape'][ind_sp]
# self.logscale_part_list = ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l']
if sp == 'smal':
loss_shape_tmp = self.shape_prior(output_reproj['betas'])
elif sp == 'limbs':
loss_shape_tmp = torch.mean((output_reproj['betas_limbs'])**2)
elif sp == 'limbs7':
limb_coeffs_list = [0.01, 1, 0.1, 1, 1, 0.1, 2]
limb_coeffs = torch.tensor(limb_coeffs_list).to(torch.float32).to(target_dict['tpts'].device)
loss_shape_tmp = torch.mean((output_reproj['betas_limbs'] * limb_coeffs[None, :])**2)
else:
raise NotImplementedError
loss_shape_weighted_list.append(weight_sp * loss_shape_tmp)
loss_shape_weighted = torch.stack((loss_shape_weighted_list)).sum()
# 3D loss for dogs for which we have a unity model or toy figure
loss_models3d = torch.zeros((1), device=device).mean().to(output_reproj['betas'].device)
if 'models3d' in weight_dict.keys():
if weight_dict['models3d'] > 0:
assert (self.dog_betas_unity is not None)
if weight_dict['models3d'] > 0:
for ind_dog in range(target_dict['breed_index'].shape[0]):
breed_index = np.asscalar(target_dict['breed_index'][ind_dog].detach().cpu().numpy())
if breed_index in self.dog_betas_unity.keys():
betas_target = self.dog_betas_unity[breed_index][:output_reproj['betas'].shape[1]].to(output_reproj['betas'].device)
betas_output = output_reproj['betas'][ind_dog, :]
betas_limbs_output = output_reproj['betas_limbs'][ind_dog, :]
loss_models3d += ((betas_limbs_output**2).sum() + ((betas_output-betas_target)**2).sum()) / (output_reproj['betas'].shape[1] + output_reproj['betas_limbs'].shape[1])
else:
weight_dict['models3d'] = 0.0
else:
weight_dict['models3d'] = 0.0
# shape resularization loss on shapedirs
# -> in the current version shapedirs are kept fixed, so we don't need those losses
if weight_dict['shapedirs'] > 0:
raise NotImplementedError
else:
loss_shapedirs = torch.zeros((1), device=device).mean().to(output_reproj['betas'].device)
# prior on back joints (not used in cvpr 2022 paper)
# -> elementwise MSE loss on all 6 coefficients of 6d rotation representation
if 'pose_0' in weight_dict.keys():
if weight_dict['pose_0'] > 0:
pred_pose_rot6d = output_reproj['pose_rot6d']
w_rj_np = np.zeros((pred_pose_rot6d.shape[1]))
w_rj_np[[2, 3, 4, 5]] = 1.0 # back
w_rj = torch.tensor(w_rj_np).to(torch.float32).to(pred_pose_rot6d.device)
zero_rot = torch.tensor([1, 0, 0, 1, 0, 0]).to(pred_pose_rot6d.device).to(torch.float32)[None, None, :].repeat((batch_size, pred_pose_rot6d.shape[1], 1))
loss_pose = self.criterion_regr(pred_pose_rot6d*w_rj[None, :, None], zero_rot*w_rj[None, :, None])
else:
loss_pose = torch.zeros((1), device=device).mean()
# pose prior
# -> we did experiment with different pose priors, for example:
# * similart to SMALify (https://github.com/benjiebob/SMALify/blob/master/smal_fitter/smal_fitter.py,
# https://github.com/benjiebob/SMALify/blob/master/smal_fitter/priors/pose_prior_35.py)
# * vae
# * normalizing flow pose prior
# -> our cvpr 2022 paper uses the normalizing flow pose prior as implemented below
if 'poseprior' in weight_dict.keys():
if weight_dict['poseprior'] > 0:
pred_pose_rot6d = output_reproj['pose_rot6d']
pred_pose = rot6d_to_rotmat(pred_pose_rot6d.reshape((-1, 6))).reshape((batch_size, -1, 3, 3))
if 'normalizing_flow_tiger' in weight_dict['poseprior_options']:
if output_reproj['normflow_z'] is not None:
loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss_from_z(output_reproj['normflow_z'], type='square')
else:
loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss(pred_pose_rot6d, type='square')
elif 'normalizing_flow_tiger_logprob' in weight_dict['poseprior_options']:
if output_reproj['normflow_z'] is not None:
loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss_from_z(output_reproj['normflow_z'], type='neg_log_prob')
else:
loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss(pred_pose_rot6d, type='neg_log_prob')
else:
raise NotImplementedError
else:
loss_poseprior = torch.zeros((1), device=device).mean()
else:
weight_dict['poseprior'] = 0
loss_poseprior = torch.zeros((1), device=device).mean()
# add a prior which penalizes side-movement angles for legs
if 'poselegssidemovement' in weight_dict.keys():
if weight_dict['poselegssidemovement'] > 0:
use_pose_legs_side_loss = True
else:
use_pose_legs_side_loss = False
else:
use_pose_legs_side_loss = False
if use_pose_legs_side_loss:
leg_indices_right = np.asarray([7, 8, 9, 10, 17, 18, 19, 20]) # front, back
leg_indices_left = np.asarray([11, 12, 13, 14, 21, 22, 23, 24]) # front, back
vec = torch.zeros((3, 1)).to(device=pred_pose.device, dtype=pred_pose.dtype)
vec[2] = -1
x0_rotmat = pred_pose
x0_rotmat_legs_left = x0_rotmat[:, leg_indices_left, :, :]
x0_rotmat_legs_right = x0_rotmat[:, leg_indices_right, :, :]
x0_legs_left = x0_rotmat_legs_left.reshape((-1, 3, 3))@vec
x0_legs_right = x0_rotmat_legs_right.reshape((-1, 3, 3))@vec
eps=0 # 1e-7
# use the component of the vector which points to the side
loss_poselegssidemovement = (x0_legs_left[:, 1]**2).mean() + (x0_legs_right[:, 1]**2).mean()
else:
loss_poselegssidemovement = torch.zeros((1), device=device).mean()
weight_dict['poselegssidemovement'] = 0
# dog breed classification loss
dog_breed_gt = target_dict['breed_index']
dog_breed_pred = output_reproj['dog_breed']
loss_class = self.criterion_class(dog_breed_pred, dog_breed_gt)
# dog breed relationship loss
# -> we did experiment with many other options, but none was significantly better
if '4' in weight_dict['breed_options']: # we have pairs of dogs of the same breed
if weight_dict['breed'] > 0:
assert output_reproj['dog_breed'].shape[0] == 12
# assert weight_dict['breed'] > 0
z = output_reproj['z']
# go through all pairs and compare them to each other sample
if self.l_anchor is None:
self.prepare_anchor_pos_neg(batch_size, z.device)
anchor = torch.index_select(z, 0, self.l_anchor)
positive = torch.index_select(z, 0, self.l_pos)
negative = torch.index_select(z, 0, self.l_neg)
loss_breed = self.criterion_triplet(anchor, positive, negative)
else:
loss_breed = torch.zeros((1), device=device).mean()
else:
loss_breed = torch.zeros((1), device=device).mean()
# regularizarion for focal length
loss_flength_near_mean = torch.mean(output_reproj['flength']**2)
loss_flength = loss_flength_near_mean
# bodypart segmentation loss
if 'partseg' in weight_dict.keys():
if weight_dict['partseg'] > 0:
raise NotImplementedError
else:
loss_partseg = torch.zeros((1), device=device).mean()
else:
weight_dict['partseg'] = 0
loss_partseg = torch.zeros((1), device=device).mean()
# NEW: ground contact loss for main network
keep_smal_mesh = False
if 'gc_plane' in weight_dict.keys():
if weight_dict['gc_plane'] > 0:
if keep_smal_mesh:
target_gc_class = target_dict['gc'][:, :, 0]
gc_errors_plane = calculate_plane_errors_batch(output_reproj['vertices_smal'], target_gc_class, target_dict['has_gc'], target_dict['has_gc_is_touching'])
loss_gc_plane = torch.mean(gc_errors_plane)
else: # use a uniformly sampled mesh
target_gc_class = target_dict['gc'][:, :, 0]
device = output_reproj['vertices_smal'].device
remeshing_relevant_faces = self.remeshing_relevant_faces.to(device)
remeshing_relevant_barys = self.remeshing_relevant_barys.to(device)
bs = output_reproj['vertices_smal'].shape[0]
# verts_remeshed = torch.einsum('ij,aijk->aik', remeshing_relevant_barys, output_reproj['vertices_smal'][:, self.remeshing_relevant_faces])
# sel_verts_comparison = output_reproj['vertices_smal'][:, self.remeshing_relevant_faces]
# verts_remeshed = torch.einsum('ij,aijk->aik', remeshing_relevant_barys, sel_verts_comparison)
sel_verts = torch.index_select(output_reproj['vertices_smal'], dim=1, index=remeshing_relevant_faces.reshape((-1))).reshape((bs, remeshing_relevant_faces.shape[0], 3, 3))
verts_remeshed = torch.einsum('ij,aijk->aik', remeshing_relevant_barys, sel_verts)
target_gc_class_remeshed = torch.einsum('ij,aij->ai', remeshing_relevant_barys, target_gc_class[:, self.remeshing_relevant_faces].to(device=device, dtype=torch.float32))
target_gc_class_remeshed_prep = torch.round(target_gc_class_remeshed).to(torch.long)
gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, target_dict['has_gc'], target_dict['has_gc_is_touching'])
loss_gc_plane = torch.mean(gc_errors_plane)
loss_gc_belowplane = torch.mean(gc_errors_under_plane)
# loss_dict_temp['gc_plane'] = torch.mean(gc_errors_plane)
else:
loss_gc_plane = torch.zeros((1), device=device).mean()
loss_gc_belowplane = torch.zeros((1), device=device).mean()
else:
loss_gc_plane = torch.zeros((1), device=device).mean()
loss_gc_belowplane = torch.zeros((1), device=device).mean()
weight_dict['gc_plane'] = 0
weight_dict['gc_belowplane'] = 0
# weight and combine losses
loss_keyp_weighted = loss_keyp * weight_dict['keyp']
loss_silh_weighted = loss_silh * weight_dict['silh']
loss_shapedirs_weighted = loss_shapedirs * weight_dict['shapedirs']
loss_pose_weighted = loss_pose * weight_dict['pose_0']
loss_class_weighted = loss_class * weight_dict['class']
loss_breed_weighted = loss_breed * weight_dict['breed']
loss_flength_weighted = loss_flength * weight_dict['flength']
loss_poseprior_weighted = loss_poseprior * weight_dict['poseprior']
loss_partseg_weighted = loss_partseg * weight_dict['partseg']
loss_models3d_weighted = loss_models3d * weight_dict['models3d']
loss_poselegssidemovement_weighted = loss_poselegssidemovement * weight_dict['poselegssidemovement']
loss_gc_plane_weighted = loss_gc_plane * weight_dict['gc_plane']
loss_gc_belowplane_weighted = loss_gc_belowplane * weight_dict['gc_belowplane']
####################################################################################################
loss = loss_keyp_weighted + loss_silh_weighted + loss_shape_weighted + loss_pose_weighted + loss_class_weighted + \
loss_shapedirs_weighted + loss_breed_weighted + loss_flength_weighted + loss_poseprior_weighted + \
loss_partseg_weighted + loss_models3d_weighted + loss_poselegssidemovement_weighted + \
loss_gc_plane_weighted + loss_gc_belowplane_weighted
####################################################################################################
loss_dict = {'loss': loss.item(),
'loss_keyp_weighted': loss_keyp_weighted.item(), \
'loss_silh_weighted': loss_silh_weighted.item(), \
'loss_shape_weighted': loss_shape_weighted.item(), \
'loss_shapedirs_weighted': loss_shapedirs_weighted.item(), \
'loss_pose0_weighted': loss_pose_weighted.item(), \
'loss_class_weighted': loss_class_weighted.item(), \
'loss_breed_weighted': loss_breed_weighted.item(), \
'loss_flength_weighted': loss_flength_weighted.item(), \
'loss_poseprior_weighted': loss_poseprior_weighted.item(), \
'loss_partseg_weighted': loss_partseg_weighted.item(), \
'loss_models3d_weighted': loss_models3d_weighted.item(), \
'loss_poselegssidemovement_weighted': loss_poselegssidemovement_weighted.item(), \
'loss_gc_plane_weighted': loss_gc_plane_weighted.item(), \
'loss_gc_belowplane_weighted': loss_gc_belowplane_weighted.item()
}
return loss, loss_dict
|