File size: 10,810 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

import torch
import torch.nn as nn
import torch.backends.cudnn
import torch.nn.parallel
from tqdm import tqdm
import os
import pathlib
from matplotlib import pyplot as plt
import cv2
import numpy as np
import torch
import trimesh

import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from stacked_hourglass.utils.evaluation import accuracy, AverageMeter, final_preds, get_preds, get_preds_soft
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image
from metrics.metrics import Metrics
from configs.SMAL_configs import EVAL_KEYPOINTS, KEYPOINT_GROUPS


# GOAL: have all the functions from the validation and visual epoch together


'''
save_imgs_path = ...
prefix = ''
input   # this is the image
data_info
target_dict
render_all
model


vertices_smal = output_reproj['vertices_smal']
flength = output_unnorm['flength']
hg_keyp_norm = output['keypoints_norm']
hg_keyp_scores = output['keypoints_scores']
betas = output_reproj['betas']
betas_limbs = output_reproj['betas_limbs']
zz = output_reproj['z']
pose_rotmat = output_unnorm['pose_rotmat']
trans = output_unnorm['trans']
pred_keyp = output_reproj['keyp_2d']
pred_silh = output_reproj['silh']
'''

#################################################

def eval_save_visualizations_and_meshes(model, input, data_info, target_dict, test_name_list, vertices_smal, hg_keyp_norm, hg_keyp_scores, zz, betas, betas_limbs, pose_rotmat, trans, flength, pred_keyp, pred_silh, save_imgs_path, prefix, index, render_all=False):
    device = input.device
    curr_batch_size = input.shape[0]
    # render predicted 3d models
    visualizations = model.render_vis_nograd(vertices=vertices_smal,
                                            focal_lengths=flength,
                                            color=0)        # color=2)
    for ind_img in range(len(target_dict['index'])):    
        try: 
            # import pdb; pdb.set_trace()
            if test_name_list is not None:
                img_name = test_name_list[int(target_dict['index'][ind_img].cpu().detach().numpy())].replace('/', '_')
                img_name = img_name.split('.')[0]
            else:
                img_name = str(index) + '_' + str(ind_img)
            # save image with predicted keypoints
            out_path = save_imgs_path + '/keypoints_pred_' + img_name + '.png'
            pred_unp = (hg_keyp_norm[ind_img, :, :] + 1.) / 2 * (data_info.image_size - 1)
            pred_unp_maxval = hg_keyp_scores[ind_img, :, :]
            pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
            inp_img = input[ind_img, :, :, :].detach().clone()
            save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_path, threshold=0.1, print_scores=True, ratio_in_out=1.0)    # threshold=0.3
            # save predicted 3d model (front view)
            pred_tex = visualizations[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
            pred_tex_max = np.max(pred_tex, axis=2)
            out_path = save_imgs_path + '/' + prefix + 'tex_pred_' + img_name + '.png'
            plt.imsave(out_path, pred_tex)
            input_image = input[ind_img, :, :, :].detach().clone()
            for t, m, s in zip(input_image, data_info.rgb_mean, data_info.rgb_stddev): t.add_(m)
            input_image_np = input_image.detach().cpu().numpy().transpose(1, 2, 0) 
            im_masked = cv2.addWeighted(input_image_np,0.2,pred_tex,0.8,0)
            im_masked[pred_tex_max<0.01, :] = input_image_np[pred_tex_max<0.01, :]
            out_path = save_imgs_path + '/' + prefix + 'comp_pred_' + img_name + '.png'
            plt.imsave(out_path, im_masked)
            # save predicted 3d model (side view)
            vertices_cent = vertices_smal - vertices_smal.mean(dim=1)[:, None, :]
            roll = np.pi / 2 * torch.ones(1).float().to(device)
            pitch = np.pi / 2 * torch.ones(1).float().to(device)
            tensor_0 = torch.zeros(1).float().to(device)
            tensor_1 = torch.ones(1).float().to(device)
            RX = torch.stack([torch.stack([tensor_1, tensor_0, tensor_0]), torch.stack([tensor_0, torch.cos(roll), -torch.sin(roll)]),torch.stack([tensor_0, torch.sin(roll), torch.cos(roll)])]).reshape(3,3)
            RY = torch.stack([
                torch.stack([torch.cos(pitch), tensor_0, torch.sin(pitch)]),
                torch.stack([tensor_0, tensor_1, tensor_0]),
                torch.stack([-torch.sin(pitch), tensor_0, torch.cos(pitch)])]).reshape(3,3)
            vertices_rot = (torch.matmul(RY, vertices_cent.reshape((-1, 3))[:, :, None])).reshape((curr_batch_size, -1, 3))
            vertices_rot[:, :, 2] = vertices_rot[:, :, 2] + torch.ones_like(vertices_rot[:, :, 2]) * 20     # 18     # *16

            visualizations_rot = model.render_vis_nograd(vertices=vertices_rot,
                                                    focal_lengths=flength,
                                                    color=0)        # 2)
            pred_tex = visualizations_rot[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
            pred_tex_max = np.max(pred_tex, axis=2)
            out_path = save_imgs_path + '/' + prefix + 'rot_tex_pred_' + img_name + '.png'
            plt.imsave(out_path, pred_tex)
            if render_all:
                # save input image
                inp_img = input[ind_img, :, :, :].detach().clone()
                out_path = save_imgs_path + '/image_' + img_name + '.png'
                save_input_image(inp_img, out_path)
                # save mesh
                V_posed = vertices_smal[ind_img, :, :].detach().cpu().numpy()
                Faces = model.smal.f
                mesh_posed = trimesh.Trimesh(vertices=V_posed, faces=Faces, process=False,  maintain_order=True)
                mesh_posed.export(save_imgs_path + '/' + prefix + 'mesh_posed_' + img_name + '.obj')
        except: 
            print('dont save an image')

############

def eval_prepare_pck_and_iou(model, input, data_info, target_dict, test_name_list, vertices_smal, hg_keyp_norm, hg_keyp_scores, zz, betas, betas_limbs, pose_rotmat, trans, flength, pred_keyp, pred_silh, save_imgs_path, prefix, index, pck_thresh, progress=None, skip_pck_and_iou=False):
    preds = {}
    preds['betas'] = betas.cpu().detach().numpy()
    preds['betas_limbs'] = betas_limbs.cpu().detach().numpy()
    preds['z'] = zz.cpu().detach().numpy()
    preds['pose_rotmat'] = pose_rotmat.cpu().detach().numpy()
    preds['flength'] = flength.cpu().detach().numpy()
    preds['trans'] = trans.cpu().detach().numpy()
    preds['breed_index'] = target_dict['breed_index'].cpu().detach().numpy().reshape((-1))
    img_names = []
    for ind_img2 in range(0, betas.shape[0]):
        if test_name_list is not None:
            img_name2 = test_name_list[int(target_dict['index'][ind_img2].cpu().detach().numpy())].replace('/', '_')
            img_name2 = img_name2.split('.')[0]
        else:
            img_name2 = str(index) + '_' + str(ind_img2)
        img_names.append(img_name2)
    preds['image_names'] = img_names
    if not skip_pck_and_iou:
        # prepare keypoints for PCK calculation - predicted as well as ground truth
        # pred_keyp = output_reproj['keyp_2d']   # 256
        gt_keypoints_256 = target_dict['tpts'][:, :, :2] / 64. * (256. - 1)
        # gt_keypoints_norm = gt_keypoints_256 / 256 / 0.5 - 1
        gt_keypoints = torch.cat((gt_keypoints_256, target_dict['tpts'][:, :, 2:3]), dim=2)     # gt_keypoints_norm
        # prepare silhouette for IoU calculation - predicted as well as ground truth
        has_seg = target_dict['has_seg']
        img_border_mask = target_dict['img_border_mask'][:, 0, :, :]
        gtseg = target_dict['silh']
        synth_silhouettes = pred_silh[:, 0, :, :]       # output_reproj['silh']
        synth_silhouettes[synth_silhouettes>0.5] = 1
        synth_silhouettes[synth_silhouettes<0.5] = 0
        # calculate PCK as well as IoU (similar to WLDO)
        preds['acc_PCK'] = Metrics.PCK(
            pred_keyp, gt_keypoints, 
            gtseg, has_seg, idxs=EVAL_KEYPOINTS,
            thresh_range=[pck_thresh],       # [0.15],
        )
        preds['acc_IOU'] = Metrics.IOU(
            synth_silhouettes, gtseg, 
            img_border_mask, mask=has_seg
        )
        for group, group_kps in KEYPOINT_GROUPS.items():
            preds[f'{group}_PCK'] = Metrics.PCK(
                pred_keyp, gt_keypoints, gtseg, has_seg, 
                thresh_range=[pck_thresh],       # [0.15],
                idxs=group_kps
            )
    return preds


# preds['acc_PCK'] = Metrics.PCK(pred_keyp, gt_keypoints, gtseg, has_seg, idxs=EVAL_KEYPOINTS, thresh_range=[pck_thresh])
# preds['acc_IOU'] = Metrics.IOU(synth_silhouettes, gtseg, img_border_mask, mask=has_seg)
#############################

def eval_add_preds_to_summary(summary, preds, my_step, batch_size, curr_batch_size, skip_pck_and_iou=False):
    if not skip_pck_and_iou:
        if not (preds['acc_PCK'].data.cpu().numpy().shape == (summary['pck'][my_step * batch_size:my_step * batch_size + curr_batch_size]).shape):
            import pdb; pdb.set_trace()
        summary['pck'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_PCK'].data.cpu().numpy()
        summary['acc_sil_2d'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_IOU'].data.cpu().numpy()
        for part in summary['pck_by_part']:
            summary['pck_by_part'][part][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds[f'{part}_PCK'].data.cpu().numpy()
    summary['betas'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['betas'] 
    summary['betas_limbs'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['betas_limbs'] 
    summary['z'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['z'] 
    summary['pose_rotmat'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['pose_rotmat'] 
    summary['flength'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['flength'] 
    summary['trans'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['trans'] 
    summary['breed_indices'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['breed_index']
    summary['image_names'].extend(preds['image_names'])
    return


def get_triangle_faces_from_pyvista_poly(poly):
    """Fetch all triangle faces."""
    stream = poly.faces
    tris = []
    i = 0
    while i < len(stream):
        n = stream[i]
        if n != 3:
            i += n + 1
            continue
        stop = i + n + 1
        tris.append(stream[i+1:stop])
        i = stop
    return np.array(tris)