Spaces:
Runtime error
Runtime error
File size: 10,810 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import torch
import torch.nn as nn
import torch.backends.cudnn
import torch.nn.parallel
from tqdm import tqdm
import os
import pathlib
from matplotlib import pyplot as plt
import cv2
import numpy as np
import torch
import trimesh
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from stacked_hourglass.utils.evaluation import accuracy, AverageMeter, final_preds, get_preds, get_preds_soft
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image
from metrics.metrics import Metrics
from configs.SMAL_configs import EVAL_KEYPOINTS, KEYPOINT_GROUPS
# GOAL: have all the functions from the validation and visual epoch together
'''
save_imgs_path = ...
prefix = ''
input # this is the image
data_info
target_dict
render_all
model
vertices_smal = output_reproj['vertices_smal']
flength = output_unnorm['flength']
hg_keyp_norm = output['keypoints_norm']
hg_keyp_scores = output['keypoints_scores']
betas = output_reproj['betas']
betas_limbs = output_reproj['betas_limbs']
zz = output_reproj['z']
pose_rotmat = output_unnorm['pose_rotmat']
trans = output_unnorm['trans']
pred_keyp = output_reproj['keyp_2d']
pred_silh = output_reproj['silh']
'''
#################################################
def eval_save_visualizations_and_meshes(model, input, data_info, target_dict, test_name_list, vertices_smal, hg_keyp_norm, hg_keyp_scores, zz, betas, betas_limbs, pose_rotmat, trans, flength, pred_keyp, pred_silh, save_imgs_path, prefix, index, render_all=False):
device = input.device
curr_batch_size = input.shape[0]
# render predicted 3d models
visualizations = model.render_vis_nograd(vertices=vertices_smal,
focal_lengths=flength,
color=0) # color=2)
for ind_img in range(len(target_dict['index'])):
try:
# import pdb; pdb.set_trace()
if test_name_list is not None:
img_name = test_name_list[int(target_dict['index'][ind_img].cpu().detach().numpy())].replace('/', '_')
img_name = img_name.split('.')[0]
else:
img_name = str(index) + '_' + str(ind_img)
# save image with predicted keypoints
out_path = save_imgs_path + '/keypoints_pred_' + img_name + '.png'
pred_unp = (hg_keyp_norm[ind_img, :, :] + 1.) / 2 * (data_info.image_size - 1)
pred_unp_maxval = hg_keyp_scores[ind_img, :, :]
pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
inp_img = input[ind_img, :, :, :].detach().clone()
save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_path, threshold=0.1, print_scores=True, ratio_in_out=1.0) # threshold=0.3
# save predicted 3d model (front view)
pred_tex = visualizations[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
pred_tex_max = np.max(pred_tex, axis=2)
out_path = save_imgs_path + '/' + prefix + 'tex_pred_' + img_name + '.png'
plt.imsave(out_path, pred_tex)
input_image = input[ind_img, :, :, :].detach().clone()
for t, m, s in zip(input_image, data_info.rgb_mean, data_info.rgb_stddev): t.add_(m)
input_image_np = input_image.detach().cpu().numpy().transpose(1, 2, 0)
im_masked = cv2.addWeighted(input_image_np,0.2,pred_tex,0.8,0)
im_masked[pred_tex_max<0.01, :] = input_image_np[pred_tex_max<0.01, :]
out_path = save_imgs_path + '/' + prefix + 'comp_pred_' + img_name + '.png'
plt.imsave(out_path, im_masked)
# save predicted 3d model (side view)
vertices_cent = vertices_smal - vertices_smal.mean(dim=1)[:, None, :]
roll = np.pi / 2 * torch.ones(1).float().to(device)
pitch = np.pi / 2 * torch.ones(1).float().to(device)
tensor_0 = torch.zeros(1).float().to(device)
tensor_1 = torch.ones(1).float().to(device)
RX = torch.stack([torch.stack([tensor_1, tensor_0, tensor_0]), torch.stack([tensor_0, torch.cos(roll), -torch.sin(roll)]),torch.stack([tensor_0, torch.sin(roll), torch.cos(roll)])]).reshape(3,3)
RY = torch.stack([
torch.stack([torch.cos(pitch), tensor_0, torch.sin(pitch)]),
torch.stack([tensor_0, tensor_1, tensor_0]),
torch.stack([-torch.sin(pitch), tensor_0, torch.cos(pitch)])]).reshape(3,3)
vertices_rot = (torch.matmul(RY, vertices_cent.reshape((-1, 3))[:, :, None])).reshape((curr_batch_size, -1, 3))
vertices_rot[:, :, 2] = vertices_rot[:, :, 2] + torch.ones_like(vertices_rot[:, :, 2]) * 20 # 18 # *16
visualizations_rot = model.render_vis_nograd(vertices=vertices_rot,
focal_lengths=flength,
color=0) # 2)
pred_tex = visualizations_rot[ind_img, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
pred_tex_max = np.max(pred_tex, axis=2)
out_path = save_imgs_path + '/' + prefix + 'rot_tex_pred_' + img_name + '.png'
plt.imsave(out_path, pred_tex)
if render_all:
# save input image
inp_img = input[ind_img, :, :, :].detach().clone()
out_path = save_imgs_path + '/image_' + img_name + '.png'
save_input_image(inp_img, out_path)
# save mesh
V_posed = vertices_smal[ind_img, :, :].detach().cpu().numpy()
Faces = model.smal.f
mesh_posed = trimesh.Trimesh(vertices=V_posed, faces=Faces, process=False, maintain_order=True)
mesh_posed.export(save_imgs_path + '/' + prefix + 'mesh_posed_' + img_name + '.obj')
except:
print('dont save an image')
############
def eval_prepare_pck_and_iou(model, input, data_info, target_dict, test_name_list, vertices_smal, hg_keyp_norm, hg_keyp_scores, zz, betas, betas_limbs, pose_rotmat, trans, flength, pred_keyp, pred_silh, save_imgs_path, prefix, index, pck_thresh, progress=None, skip_pck_and_iou=False):
preds = {}
preds['betas'] = betas.cpu().detach().numpy()
preds['betas_limbs'] = betas_limbs.cpu().detach().numpy()
preds['z'] = zz.cpu().detach().numpy()
preds['pose_rotmat'] = pose_rotmat.cpu().detach().numpy()
preds['flength'] = flength.cpu().detach().numpy()
preds['trans'] = trans.cpu().detach().numpy()
preds['breed_index'] = target_dict['breed_index'].cpu().detach().numpy().reshape((-1))
img_names = []
for ind_img2 in range(0, betas.shape[0]):
if test_name_list is not None:
img_name2 = test_name_list[int(target_dict['index'][ind_img2].cpu().detach().numpy())].replace('/', '_')
img_name2 = img_name2.split('.')[0]
else:
img_name2 = str(index) + '_' + str(ind_img2)
img_names.append(img_name2)
preds['image_names'] = img_names
if not skip_pck_and_iou:
# prepare keypoints for PCK calculation - predicted as well as ground truth
# pred_keyp = output_reproj['keyp_2d'] # 256
gt_keypoints_256 = target_dict['tpts'][:, :, :2] / 64. * (256. - 1)
# gt_keypoints_norm = gt_keypoints_256 / 256 / 0.5 - 1
gt_keypoints = torch.cat((gt_keypoints_256, target_dict['tpts'][:, :, 2:3]), dim=2) # gt_keypoints_norm
# prepare silhouette for IoU calculation - predicted as well as ground truth
has_seg = target_dict['has_seg']
img_border_mask = target_dict['img_border_mask'][:, 0, :, :]
gtseg = target_dict['silh']
synth_silhouettes = pred_silh[:, 0, :, :] # output_reproj['silh']
synth_silhouettes[synth_silhouettes>0.5] = 1
synth_silhouettes[synth_silhouettes<0.5] = 0
# calculate PCK as well as IoU (similar to WLDO)
preds['acc_PCK'] = Metrics.PCK(
pred_keyp, gt_keypoints,
gtseg, has_seg, idxs=EVAL_KEYPOINTS,
thresh_range=[pck_thresh], # [0.15],
)
preds['acc_IOU'] = Metrics.IOU(
synth_silhouettes, gtseg,
img_border_mask, mask=has_seg
)
for group, group_kps in KEYPOINT_GROUPS.items():
preds[f'{group}_PCK'] = Metrics.PCK(
pred_keyp, gt_keypoints, gtseg, has_seg,
thresh_range=[pck_thresh], # [0.15],
idxs=group_kps
)
return preds
# preds['acc_PCK'] = Metrics.PCK(pred_keyp, gt_keypoints, gtseg, has_seg, idxs=EVAL_KEYPOINTS, thresh_range=[pck_thresh])
# preds['acc_IOU'] = Metrics.IOU(synth_silhouettes, gtseg, img_border_mask, mask=has_seg)
#############################
def eval_add_preds_to_summary(summary, preds, my_step, batch_size, curr_batch_size, skip_pck_and_iou=False):
if not skip_pck_and_iou:
if not (preds['acc_PCK'].data.cpu().numpy().shape == (summary['pck'][my_step * batch_size:my_step * batch_size + curr_batch_size]).shape):
import pdb; pdb.set_trace()
summary['pck'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_PCK'].data.cpu().numpy()
summary['acc_sil_2d'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['acc_IOU'].data.cpu().numpy()
for part in summary['pck_by_part']:
summary['pck_by_part'][part][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds[f'{part}_PCK'].data.cpu().numpy()
summary['betas'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['betas']
summary['betas_limbs'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['betas_limbs']
summary['z'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['z']
summary['pose_rotmat'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['pose_rotmat']
summary['flength'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['flength']
summary['trans'][my_step * batch_size:my_step * batch_size + curr_batch_size, ...] = preds['trans']
summary['breed_indices'][my_step * batch_size:my_step * batch_size + curr_batch_size] = preds['breed_index']
summary['image_names'].extend(preds['image_names'])
return
def get_triangle_faces_from_pyvista_poly(poly):
"""Fetch all triangle faces."""
stream = poly.faces
tris = []
i = 0
while i < len(stream):
n = stream[i]
if n != 3:
i += n + 1
continue
stop = i + n + 1
tris.append(stream[i+1:stop])
i = stop
return np.array(tris) |