File size: 5,134 Bytes
b092c58
 
 
 
1c2e145
 
b092c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from dataclasses import asdict
from io import StringIO
import json
import os
import streamlit as st

from data_driven_characters.character import generate_character_definition, Character
from data_driven_characters.corpus import (
    generate_corpus_summaries,
    generate_docs,
)
from data_driven_characters.chatbots import (
    SummaryChatBot,
    RetrievalChatBot,
    SummaryRetrievalChatBot,
)
from data_driven_characters.interfaces import reset_chat, clear_user_input, converse


@st.cache_resource()
def create_chatbot(character_definition, corpus_summaries, chatbot_type):
    if chatbot_type == "summary":
        chatbot = SummaryChatBot(character_definition=character_definition)
    elif chatbot_type == "retrieval":
        chatbot = RetrievalChatBot(
            character_definition=character_definition,
            documents=corpus_summaries,
        )
    elif chatbot_type == "summary with retrieval":
        chatbot = SummaryRetrievalChatBot(
            character_definition=character_definition,
            documents=corpus_summaries,
        )
    else:
        raise ValueError(f"Unknown chatbot type: {chatbot_type}")
    return chatbot


@st.cache_data(persist="disk")
def process_corpus(corpus):
    # load docs
    docs = generate_docs(
        corpus=corpus,
        chunk_size=2048,
        chunk_overlap=64,
    )

    # generate summaries
    corpus_summaries = generate_corpus_summaries(docs=docs, summary_type="map_reduce")
    return corpus_summaries


@st.cache_data(persist="disk")
def get_character_definition(name, corpus_summaries):
    character_definition = generate_character_definition(
        name=name,
        corpus_summaries=corpus_summaries,
    )
    return asdict(character_definition)


def main():
    st.title("Data-Driven Characters")
    st.write(
        "Upload a corpus in the sidebar to generate a character chatbot that is grounded in the corpus content."
    )
    openai_api_key = st.text_input(
        label="Your OpenAI API KEY",
        placeholder="Your OpenAI API KEY",
        type="password",
    )
    os.environ["OPENAI_API_KEY"] = openai_api_key

    with st.sidebar:
        uploaded_file = st.file_uploader("Upload corpus")
        if uploaded_file is not None:
            corpus_name = os.path.splitext(os.path.basename(uploaded_file.name))[0]

            # read file
            stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
            corpus = stringio.read()

            # scrollable text
            st.markdown(
                f"""
                <div style='overflow: auto; height: 200px; border: 1px solid gray; border-radius: 5px; padding: 10px'>
                    {corpus}</div>
                """,
                unsafe_allow_html=True,
            )

            st.divider()

            # get character name
            character_name = st.text_input(f"Enter a character name from {corpus_name}")

            if character_name:
                if not openai_api_key:
                    st.error(
                        "You must enter an API key to use the OpenAI API. Please enter an API key in the sidebar."
                    )
                    return

                if (
                    "character_name" in st.session_state
                    and st.session_state["character_name"] != character_name
                ):
                    clear_user_input()
                    reset_chat()

                st.session_state["character_name"] = character_name

                with st.spinner("Processing corpus (this will take a while)..."):
                    corpus_summaries = process_corpus(corpus)

                with st.spinner("Generating character definition..."):
                    # get character definition
                    character_definition = get_character_definition(
                        name=character_name,
                        corpus_summaries=corpus_summaries,
                    )

                    print(json.dumps(character_definition, indent=4))
                    chatbot_type = st.selectbox(
                        "Select a memory type",
                        options=["summary", "retrieval", "summary with retrieval"],
                        index=2,
                    )
                    if (
                        "chatbot_type" in st.session_state
                        and st.session_state["chatbot_type"] != chatbot_type
                    ):
                        clear_user_input()
                        reset_chat()

                    st.session_state["chatbot_type"] = chatbot_type

                    st.markdown(
                        f"[Export to character.ai](https://beta.character.ai/editing):"
                    )
                    st.write(character_definition)

    if uploaded_file is not None and character_name:
        st.divider()
        chatbot = create_chatbot(
            character_definition=Character(**character_definition),
            corpus_summaries=corpus_summaries,
            chatbot_type=chatbot_type,
        )
        converse(chatbot)


if __name__ == "__main__":
    main()