rphrp1985's picture
Update app.py
ed5339b verified
raw
history blame
6.07 kB
import spaces
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
from diffusers import AutoPipelineForText2Image
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
# repo = "dataautogpt3/OpenDalleV1.1"
repo = "SG161222/RealVisXL_V4.0"
repo = "SG161222/RealVisXL_V5.0"
# repo="stabilityai/stable-diffusion-3-medium-tensorrt"
# pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
pipeline = AutoPipelineForText2Image.from_pretrained(repo, torch_dtype=torch.float16).to('cuda')
def adjust_to_nearest_multiple(value, divisor=8):
"""
Adjusts the input value to the nearest multiple of the divisor.
Args:
value (int): The value to adjust.
divisor (int): The divisor to which the value should be divisible. Default is 8.
Returns:
int: The nearest multiple of the divisor.
"""
if value % divisor == 0:
return value
else:
# Round to the nearest multiple of divisor
return round(value / divisor) * divisor
def adjust_dimensions(height, width):
"""
Adjusts the height and width to be divisible by 8.
Args:
height (int): The height to adjust.
width (int): The width to adjust.
Returns:
tuple: Adjusted height and width.
"""
new_height = adjust_to_nearest_multiple(height)
new_width = adjust_to_nearest_multiple(width)
return new_height, new_width
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4100
@spaces.GPU(duration=60)
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
width = min(width, MAX_IMAGE_SIZE // 2)
height = min(height, MAX_IMAGE_SIZE // 2)
height, width = adjust_dimensions(height, width)
generator = torch.Generator().manual_seed(seed)
image = pipeline(prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
# image = pipe(
# prompt = prompt,
# negative_prompt = negative_prompt,
# guidance_scale = guidance_scale,
# num_inference_steps = num_inference_steps,
# width = width,
# height = height,
# generator = generator
# ).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()