yu-rp commited on
Commit
c64fb9f
·
1 Parent(s): 9106da3
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. API_CLIP/clip_prs/.gitignore +6 -0
  2. API_CLIP/clip_prs/LICENSE.txt +400 -0
  3. API_CLIP/clip_prs/README.md +104 -0
  4. API_CLIP/clip_prs/environment.yml +19 -0
  5. API_CLIP/clip_prs/utils/__init__.py +10 -0
  6. API_CLIP/clip_prs/utils/binary_waterbirds.py +52 -0
  7. API_CLIP/clip_prs/utils/constants.py +2 -0
  8. API_CLIP/clip_prs/utils/cub_classes.py +2 -0
  9. API_CLIP/clip_prs/utils/factory.py +382 -0
  10. API_CLIP/clip_prs/utils/hook.py +91 -0
  11. API_CLIP/clip_prs/utils/imagenet_classes.py +1 -0
  12. API_CLIP/clip_prs/utils/imagenet_segmentation.py +50 -0
  13. API_CLIP/clip_prs/utils/misc.py +114 -0
  14. API_CLIP/clip_prs/utils/model.py +407 -0
  15. API_CLIP/clip_prs/utils/model_configs/EVA01-g-14-plus.json +18 -0
  16. API_CLIP/clip_prs/utils/model_configs/EVA01-g-14.json +18 -0
  17. API_CLIP/clip_prs/utils/model_configs/EVA02-B-16.json +18 -0
  18. API_CLIP/clip_prs/utils/model_configs/EVA02-E-14-plus.json +18 -0
  19. API_CLIP/clip_prs/utils/model_configs/EVA02-E-14.json +18 -0
  20. API_CLIP/clip_prs/utils/model_configs/EVA02-L-14-336.json +18 -0
  21. API_CLIP/clip_prs/utils/model_configs/EVA02-L-14.json +18 -0
  22. API_CLIP/clip_prs/utils/model_configs/ViT-B-16-plus-240.json +16 -0
  23. API_CLIP/clip_prs/utils/model_configs/ViT-B-16-plus.json +16 -0
  24. API_CLIP/clip_prs/utils/model_configs/ViT-B-16.json +16 -0
  25. API_CLIP/clip_prs/utils/model_configs/ViT-B-32-plus-256.json +16 -0
  26. API_CLIP/clip_prs/utils/model_configs/ViT-B-32-quickgelu.json +17 -0
  27. API_CLIP/clip_prs/utils/model_configs/ViT-B-32.json +16 -0
  28. API_CLIP/clip_prs/utils/model_configs/ViT-H-14.json +17 -0
  29. API_CLIP/clip_prs/utils/model_configs/ViT-H-16.json +17 -0
  30. API_CLIP/clip_prs/utils/model_configs/ViT-L-14-280.json +16 -0
  31. API_CLIP/clip_prs/utils/model_configs/ViT-L-14-336.json +16 -0
  32. API_CLIP/clip_prs/utils/model_configs/ViT-L-14.json +16 -0
  33. API_CLIP/clip_prs/utils/model_configs/ViT-L-16-320.json +16 -0
  34. API_CLIP/clip_prs/utils/model_configs/ViT-L-16.json +16 -0
  35. API_CLIP/clip_prs/utils/model_configs/ViT-M-16-alt.json +17 -0
  36. API_CLIP/clip_prs/utils/model_configs/ViT-M-16.json +16 -0
  37. API_CLIP/clip_prs/utils/model_configs/ViT-M-32-alt.json +16 -0
  38. API_CLIP/clip_prs/utils/model_configs/ViT-M-32.json +16 -0
  39. API_CLIP/clip_prs/utils/model_configs/ViT-S-16-alt.json +16 -0
  40. API_CLIP/clip_prs/utils/model_configs/ViT-S-16.json +16 -0
  41. API_CLIP/clip_prs/utils/model_configs/ViT-S-32-alt.json +16 -0
  42. API_CLIP/clip_prs/utils/model_configs/ViT-S-32.json +16 -0
  43. API_CLIP/clip_prs/utils/model_configs/ViT-bigG-14.json +18 -0
  44. API_CLIP/clip_prs/utils/model_configs/ViT-e-14.json +18 -0
  45. API_CLIP/clip_prs/utils/model_configs/ViT-g-14.json +18 -0
  46. API_CLIP/clip_prs/utils/model_configs/coca_ViT-B-32.json +30 -0
  47. API_CLIP/clip_prs/utils/model_configs/coca_ViT-L-14.json +30 -0
  48. API_CLIP/clip_prs/utils/model_configs/coca_base.json +31 -0
  49. API_CLIP/clip_prs/utils/model_configs/coca_roberta-ViT-B-32.json +24 -0
  50. API_CLIP/clip_prs/utils/model_configs/mt5-base-ViT-B-32.json +15 -0
API_CLIP/clip_prs/.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .ipynb_checkpoints/
2
+ __pycache__/
3
+ */*.mat
4
+ utils/__pycache__
5
+ imagenet_seg/
6
+ run/
API_CLIP/clip_prs/LICENSE.txt ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Attribution-NonCommercial 4.0 International
3
+
4
+ =======================================================================
5
+
6
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
7
+ does not provide legal services or legal advice. Distribution of
8
+ Creative Commons public licenses does not create a lawyer-client or
9
+ other relationship. Creative Commons makes its licenses and related
10
+ information available on an "as-is" basis. Creative Commons gives no
11
+ warranties regarding its licenses, any material licensed under their
12
+ terms and conditions, or any related information. Creative Commons
13
+ disclaims all liability for damages resulting from their use to the
14
+ fullest extent possible.
15
+
16
+ Using Creative Commons Public Licenses
17
+
18
+ Creative Commons public licenses provide a standard set of terms and
19
+ conditions that creators and other rights holders may use to share
20
+ original works of authorship and other material subject to copyright
21
+ and certain other rights specified in the public license below. The
22
+ following considerations are for informational purposes only, are not
23
+ exhaustive, and do not form part of our licenses.
24
+
25
+ Considerations for licensors: Our public licenses are
26
+ intended for use by those authorized to give the public
27
+ permission to use material in ways otherwise restricted by
28
+ copyright and certain other rights. Our licenses are
29
+ irrevocable. Licensors should read and understand the terms
30
+ and conditions of the license they choose before applying it.
31
+ Licensors should also secure all rights necessary before
32
+ applying our licenses so that the public can reuse the
33
+ material as expected. Licensors should clearly mark any
34
+ material not subject to the license. This includes other CC-
35
+ licensed material, or material used under an exception or
36
+ limitation to copyright. More considerations for licensors:
37
+ wiki.creativecommons.org/Considerations_for_licensors
38
+
39
+ Considerations for the public: By using one of our public
40
+ licenses, a licensor grants the public permission to use the
41
+ licensed material under specified terms and conditions. If
42
+ the licensor's permission is not necessary for any reason--for
43
+ example, because of any applicable exception or limitation to
44
+ copyright--then that use is not regulated by the license. Our
45
+ licenses grant only permissions under copyright and certain
46
+ other rights that a licensor has authority to grant. Use of
47
+ the licensed material may still be restricted for other
48
+ reasons, including because others have copyright or other
49
+ rights in the material. A licensor may make special requests,
50
+ such as asking that all changes be marked or described.
51
+ Although not required by our licenses, you are encouraged to
52
+ respect those requests where reasonable. More_considerations
53
+ for the public:
54
+ wiki.creativecommons.org/Considerations_for_licensees
55
+
56
+ =======================================================================
57
+
58
+ Creative Commons Attribution-NonCommercial 4.0 International Public
59
+ License
60
+
61
+ By exercising the Licensed Rights (defined below), You accept and agree
62
+ to be bound by the terms and conditions of this Creative Commons
63
+ Attribution-NonCommercial 4.0 International Public License ("Public
64
+ License"). To the extent this Public License may be interpreted as a
65
+ contract, You are granted the Licensed Rights in consideration of Your
66
+ acceptance of these terms and conditions, and the Licensor grants You
67
+ such rights in consideration of benefits the Licensor receives from
68
+ making the Licensed Material available under these terms and
69
+ conditions.
70
+
71
+ Section 1 -- Definitions.
72
+
73
+ a. Adapted Material means material subject to Copyright and Similar
74
+ Rights that is derived from or based upon the Licensed Material
75
+ and in which the Licensed Material is translated, altered,
76
+ arranged, transformed, or otherwise modified in a manner requiring
77
+ permission under the Copyright and Similar Rights held by the
78
+ Licensor. For purposes of this Public License, where the Licensed
79
+ Material is a musical work, performance, or sound recording,
80
+ Adapted Material is always produced where the Licensed Material is
81
+ synched in timed relation with a moving image.
82
+
83
+ b. Adapter's License means the license You apply to Your Copyright
84
+ and Similar Rights in Your contributions to Adapted Material in
85
+ accordance with the terms and conditions of this Public License.
86
+
87
+ c. Copyright and Similar Rights means copyright and/or similar rights
88
+ closely related to copyright including, without limitation,
89
+ performance, broadcast, sound recording, and Sui Generis Database
90
+ Rights, without regard to how the rights are labeled or
91
+ categorized. For purposes of this Public License, the rights
92
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
93
+ Rights.
94
+ d. Effective Technological Measures means those measures that, in the
95
+ absence of proper authority, may not be circumvented under laws
96
+ fulfilling obligations under Article 11 of the WIPO Copyright
97
+ Treaty adopted on December 20, 1996, and/or similar international
98
+ agreements.
99
+
100
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
101
+ any other exception or limitation to Copyright and Similar Rights
102
+ that applies to Your use of the Licensed Material.
103
+
104
+ f. Licensed Material means the artistic or literary work, database,
105
+ or other material to which the Licensor applied this Public
106
+ License.
107
+
108
+ g. Licensed Rights means the rights granted to You subject to the
109
+ terms and conditions of this Public License, which are limited to
110
+ all Copyright and Similar Rights that apply to Your use of the
111
+ Licensed Material and that the Licensor has authority to license.
112
+
113
+ h. Licensor means the individual(s) or entity(ies) granting rights
114
+ under this Public License.
115
+
116
+ i. NonCommercial means not primarily intended for or directed towards
117
+ commercial advantage or monetary compensation. For purposes of
118
+ this Public License, the exchange of the Licensed Material for
119
+ other material subject to Copyright and Similar Rights by digital
120
+ file-sharing or similar means is NonCommercial provided there is
121
+ no payment of monetary compensation in connection with the
122
+ exchange.
123
+
124
+ j. Share means to provide material to the public by any means or
125
+ process that requires permission under the Licensed Rights, such
126
+ as reproduction, public display, public performance, distribution,
127
+ dissemination, communication, or importation, and to make material
128
+ available to the public including in ways that members of the
129
+ public may access the material from a place and at a time
130
+ individually chosen by them.
131
+
132
+ k. Sui Generis Database Rights means rights other than copyright
133
+ resulting from Directive 96/9/EC of the European Parliament and of
134
+ the Council of 11 March 1996 on the legal protection of databases,
135
+ as amended and/or succeeded, as well as other essentially
136
+ equivalent rights anywhere in the world.
137
+
138
+ l. You means the individual or entity exercising the Licensed Rights
139
+ under this Public License. Your has a corresponding meaning.
140
+
141
+ Section 2 -- Scope.
142
+
143
+ a. License grant.
144
+
145
+ 1. Subject to the terms and conditions of this Public License,
146
+ the Licensor hereby grants You a worldwide, royalty-free,
147
+ non-sublicensable, non-exclusive, irrevocable license to
148
+ exercise the Licensed Rights in the Licensed Material to:
149
+
150
+ a. reproduce and Share the Licensed Material, in whole or
151
+ in part, for NonCommercial purposes only; and
152
+
153
+ b. produce, reproduce, and Share Adapted Material for
154
+ NonCommercial purposes only.
155
+
156
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
157
+ Exceptions and Limitations apply to Your use, this Public
158
+ License does not apply, and You do not need to comply with
159
+ its terms and conditions.
160
+
161
+ 3. Term. The term of this Public License is specified in Section
162
+ 6(a).
163
+
164
+ 4. Media and formats; technical modifications allowed. The
165
+ Licensor authorizes You to exercise the Licensed Rights in
166
+ all media and formats whether now known or hereafter created,
167
+ and to make technical modifications necessary to do so. The
168
+ Licensor waives and/or agrees not to assert any right or
169
+ authority to forbid You from making technical modifications
170
+ necessary to exercise the Licensed Rights, including
171
+ technical modifications necessary to circumvent Effective
172
+ Technological Measures. For purposes of this Public License,
173
+ simply making modifications authorized by this Section 2(a)
174
+ (4) never produces Adapted Material.
175
+
176
+ 5. Downstream recipients.
177
+
178
+ a. Offer from the Licensor -- Licensed Material. Every
179
+ recipient of the Licensed Material automatically
180
+ receives an offer from the Licensor to exercise the
181
+ Licensed Rights under the terms and conditions of this
182
+ Public License.
183
+
184
+ b. No downstream restrictions. You may not offer or impose
185
+ any additional or different terms or conditions on, or
186
+ apply any Effective Technological Measures to, the
187
+ Licensed Material if doing so restricts exercise of the
188
+ Licensed Rights by any recipient of the Licensed
189
+ Material.
190
+
191
+ 6. No endorsement. Nothing in this Public License constitutes or
192
+ may be construed as permission to assert or imply that You
193
+ are, or that Your use of the Licensed Material is, connected
194
+ with, or sponsored, endorsed, or granted official status by,
195
+ the Licensor or others designated to receive attribution as
196
+ provided in Section 3(a)(1)(A)(i).
197
+
198
+ b. Other rights.
199
+
200
+ 1. Moral rights, such as the right of integrity, are not
201
+ licensed under this Public License, nor are publicity,
202
+ privacy, and/or other similar personality rights; however, to
203
+ the extent possible, the Licensor waives and/or agrees not to
204
+ assert any such rights held by the Licensor to the limited
205
+ extent necessary to allow You to exercise the Licensed
206
+ Rights, but not otherwise.
207
+
208
+ 2. Patent and trademark rights are not licensed under this
209
+ Public License.
210
+
211
+ 3. To the extent possible, the Licensor waives any right to
212
+ collect royalties from You for the exercise of the Licensed
213
+ Rights, whether directly or through a collecting society
214
+ under any voluntary or waivable statutory or compulsory
215
+ licensing scheme. In all other cases the Licensor expressly
216
+ reserves any right to collect such royalties, including when
217
+ the Licensed Material is used other than for NonCommercial
218
+ purposes.
219
+
220
+ Section 3 -- License Conditions.
221
+
222
+ Your exercise of the Licensed Rights is expressly made subject to the
223
+ following conditions.
224
+
225
+ a. Attribution.
226
+
227
+ 1. If You Share the Licensed Material (including in modified
228
+ form), You must:
229
+
230
+ a. retain the following if it is supplied by the Licensor
231
+ with the Licensed Material:
232
+
233
+ i. identification of the creator(s) of the Licensed
234
+ Material and any others designated to receive
235
+ attribution, in any reasonable manner requested by
236
+ the Licensor (including by pseudonym if
237
+ designated);
238
+
239
+ ii. a copyright notice;
240
+
241
+ iii. a notice that refers to this Public License;
242
+
243
+ iv. a notice that refers to the disclaimer of
244
+ warranties;
245
+
246
+ v. a URI or hyperlink to the Licensed Material to the
247
+ extent reasonably practicable;
248
+
249
+ b. indicate if You modified the Licensed Material and
250
+ retain an indication of any previous modifications; and
251
+
252
+ c. indicate the Licensed Material is licensed under this
253
+ Public License, and include the text of, or the URI or
254
+ hyperlink to, this Public License.
255
+
256
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
257
+ reasonable manner based on the medium, means, and context in
258
+ which You Share the Licensed Material. For example, it may be
259
+ reasonable to satisfy the conditions by providing a URI or
260
+ hyperlink to a resource that includes the required
261
+ information.
262
+
263
+ 3. If requested by the Licensor, You must remove any of the
264
+ information required by Section 3(a)(1)(A) to the extent
265
+ reasonably practicable.
266
+
267
+ 4. If You Share Adapted Material You produce, the Adapter's
268
+ License You apply must not prevent recipients of the Adapted
269
+ Material from complying with this Public License.
270
+
271
+ Section 4 -- Sui Generis Database Rights.
272
+
273
+ Where the Licensed Rights include Sui Generis Database Rights that
274
+ apply to Your use of the Licensed Material:
275
+
276
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
277
+ to extract, reuse, reproduce, and Share all or a substantial
278
+ portion of the contents of the database for NonCommercial purposes
279
+ only;
280
+
281
+ b. if You include all or a substantial portion of the database
282
+ contents in a database in which You have Sui Generis Database
283
+ Rights, then the database in which You have Sui Generis Database
284
+ Rights (but not its individual contents) is Adapted Material; and
285
+
286
+ c. You must comply with the conditions in Section 3(a) if You Share
287
+ all or a substantial portion of the contents of the database.
288
+
289
+ For the avoidance of doubt, this Section 4 supplements and does not
290
+ replace Your obligations under this Public License where the Licensed
291
+ Rights include other Copyright and Similar Rights.
292
+
293
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
294
+
295
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
296
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
297
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
298
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
299
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
300
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
301
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
302
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
303
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
304
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
305
+
306
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
307
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
308
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
309
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
310
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
311
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
312
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
313
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
314
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
315
+
316
+ c. The disclaimer of warranties and limitation of liability provided
317
+ above shall be interpreted in a manner that, to the extent
318
+ possible, most closely approximates an absolute disclaimer and
319
+ waiver of all liability.
320
+
321
+ Section 6 -- Term and Termination.
322
+
323
+ a. This Public License applies for the term of the Copyright and
324
+ Similar Rights licensed here. However, if You fail to comply with
325
+ this Public License, then Your rights under this Public License
326
+ terminate automatically.
327
+
328
+ b. Where Your right to use the Licensed Material has terminated under
329
+ Section 6(a), it reinstates:
330
+
331
+ 1. automatically as of the date the violation is cured, provided
332
+ it is cured within 30 days of Your discovery of the
333
+ violation; or
334
+
335
+ 2. upon express reinstatement by the Licensor.
336
+
337
+ For the avoidance of doubt, this Section 6(b) does not affect any
338
+ right the Licensor may have to seek remedies for Your violations
339
+ of this Public License.
340
+
341
+ c. For the avoidance of doubt, the Licensor may also offer the
342
+ Licensed Material under separate terms or conditions or stop
343
+ distributing the Licensed Material at any time; however, doing so
344
+ will not terminate this Public License.
345
+
346
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
347
+ License.
348
+
349
+ Section 7 -- Other Terms and Conditions.
350
+
351
+ a. The Licensor shall not be bound by any additional or different
352
+ terms or conditions communicated by You unless expressly agreed.
353
+
354
+ b. Any arrangements, understandings, or agreements regarding the
355
+ Licensed Material not stated herein are separate from and
356
+ independent of the terms and conditions of this Public License.
357
+
358
+ Section 8 -- Interpretation.
359
+
360
+ a. For the avoidance of doubt, this Public License does not, and
361
+ shall not be interpreted to, reduce, limit, restrict, or impose
362
+ conditions on any use of the Licensed Material that could lawfully
363
+ be made without permission under this Public License.
364
+
365
+ b. To the extent possible, if any provision of this Public License is
366
+ deemed unenforceable, it shall be automatically reformed to the
367
+ minimum extent necessary to make it enforceable. If the provision
368
+ cannot be reformed, it shall be severed from this Public License
369
+ without affecting the enforceability of the remaining terms and
370
+ conditions.
371
+
372
+ c. No term or condition of this Public License will be waived and no
373
+ failure to comply consented to unless expressly agreed to by the
374
+ Licensor.
375
+
376
+ d. Nothing in this Public License constitutes or may be interpreted
377
+ as a limitation upon, or waiver of, any privileges and immunities
378
+ that apply to the Licensor or You, including from the legal
379
+ processes of any jurisdiction or authority.
380
+
381
+ =======================================================================
382
+
383
+ Creative Commons is not a party to its public
384
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
385
+ its public licenses to material it publishes and in those instances
386
+ will be considered the “Licensor.” The text of the Creative Commons
387
+ public licenses is dedicated to the public domain under the CC0 Public
388
+ Domain Dedication. Except for the limited purpose of indicating that
389
+ material is shared under a Creative Commons public license or as
390
+ otherwise permitted by the Creative Commons policies published at
391
+ creativecommons.org/policies, Creative Commons does not authorize the
392
+ use of the trademark "Creative Commons" or any other trademark or logo
393
+ of Creative Commons without its prior written consent including,
394
+ without limitation, in connection with any unauthorized modifications
395
+ to any of its public licenses or any other arrangements,
396
+ understandings, or agreements concerning use of licensed material. For
397
+ the avoidance of doubt, this paragraph does not form part of the
398
+ public licenses.
399
+
400
+ Creative Commons may be contacted at creativecommons.org.
API_CLIP/clip_prs/README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Interpreting CLIP's Image Representation via Text-Based Decomposition
2
+ Official PyTorch Implementation
3
+
4
+ ### [Paper](https://arxiv.org/abs/2310.05916) | [Project Page](https://yossigandelsman.github.io/clip_decomposition/)
5
+
6
+ [Yossi Gandelsman](https://yossigandelsman.github.io/), [Alexei A. Efros](https://people.eecs.berkeley.edu/~efros/) and [Jacob Steinhardt](https://jsteinhardt.stat.berkeley.edu/)
7
+
8
+ ![Teaser](images/teaser.png)
9
+
10
+ ### Setup
11
+ We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment:
12
+
13
+ ```bash
14
+ conda env create -f environment.yml
15
+ conda activate prsclip
16
+ ```
17
+ ### Preprocessing
18
+ To obtain the projected residual stream components for the ImageNet validation set, including the contributions from multi-head attentions and MLPs, please run one of the following instructions:
19
+
20
+ ```bash
21
+ python compute_prs.py --dataset imagenet --device cuda:0 --model ViT-H-14 --pretrained laion2b_s32b_b79k --data_path <PATH>
22
+ python compute_prs.py --dataset imagenet --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path <PATH>
23
+ python compute_prs.py --dataset imagenet --device cuda:0 --model ViT-B-16 --pretrained laion2b_s34b_b88k --data_path <PATH>
24
+ ```
25
+
26
+ To obtain the precomputed text representations of the ImageNet classes, please run:
27
+ ```bash
28
+ python compute_text_projection.py --dataset imagenet --device cuda:0 --model ViT-H-14 --pretrained laion2b_s32b_b79k
29
+ python compute_text_projection.py --dataset imagenet --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k
30
+ python compute_text_projection.py --dataset imagenet --device cuda:0 --model ViT-B-16 --pretrained laion2b_s34b_b88k
31
+ ```
32
+
33
+ ### Mean-ablations
34
+ To verify that the MLPs and the attention from the class token to itself can be mean-ablated, please run:
35
+
36
+ ```bash
37
+ python compute_ablations.py --model ViT-H-14
38
+ python compute_ablations.py --model ViT-L-14
39
+ python compute_ablations.py --model ViT-B-16
40
+ ```
41
+
42
+ ### Convert text labels to represntation
43
+ To convert the text labels for <i>TextSpan</i> to CLIP text representations, please run:
44
+
45
+ ```bash
46
+ python compute_text_set_projection.py --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path text_descriptions/google_3498_english.txt
47
+ python compute_text_set_projection.py --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path text_descriptions/image_descriptions_general.txt
48
+ ```
49
+
50
+ ### ImageNet segmentation
51
+ Please download the dataset from [here](http://calvin-vision.net/bigstuff/proj-imagenet/data/gtsegs_ijcv.mat):
52
+
53
+ ```bash
54
+ mkdir imagenet_seg
55
+ cd imagenet_seg
56
+ wget http://calvin-vision.net/bigstuff/proj-imagenet/data/gtsegs_ijcv.mat
57
+ ```
58
+
59
+ To get the evaluation results, please run:
60
+
61
+ ```bash
62
+ python compute_segmentations.py --device cuda:0 --model ViT-H-14 --pretrained laion2b_s32b_b79k --data_path imagenet_seg/gtsegs_ijcv.mat --save_img
63
+ python compute_segmentations.py --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path imagenet_seg/gtsegs_ijcv.mat --save_img
64
+ python compute_segmentations.py --device cuda:0 --model ViT-B-16 --pretrained laion2b_s34b_b88k --data_path imagenet_seg/gtsegs_ijcv.mat --save_img
65
+ ```
66
+ Save the results with the `--save_img` flag.
67
+
68
+
69
+ ### TextSpan
70
+
71
+ To find meaningful directions for all the attenion heads, run:
72
+ ```bash
73
+ python compute_complete_text_set.py --device cuda:0 --model ViT-B-16 --texts_per_head 20 --num_of_last_layers 4 --text_descriptions image_descriptions_general
74
+ python compute_complete_text_set.py --device cuda:0 --model ViT-L-14 --texts_per_head 20 --num_of_last_layers 4 --text_descriptions image_descriptions_general
75
+ python compute_complete_text_set.py --device cuda:0 --model ViT-H-14 --texts_per_head 20 --num_of_last_layers 4 --text_descriptions image_descriptions_general
76
+ ```
77
+
78
+ ### Other datasets
79
+ To download the Waterbirds datasets, run:
80
+ ```bash
81
+ wget https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz
82
+ tar -xf waterbird_complete95_forest2water2.tar.gz
83
+ ```
84
+ To compute the overall accuracy, run:
85
+ ```bash
86
+ python compute_text_projection.py --dataset binary_waterbirds --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k
87
+ python compute_use_specific_heads.py --model ViT-L-14 --dataset binary_waterbirds
88
+ ```
89
+
90
+ ### Spatial decomposition
91
+ Please see a demo for the spatial decomposition of CLIP in `demo.ipynb`.
92
+
93
+ ### BibTeX
94
+
95
+ ```bibtex
96
+ @misc{gandelsman2023interpreting,
97
+ title={Interpreting CLIP's Image Representation via Text-Based Decomposition},
98
+ author={Yossi Gandelsman and Alexei A. Efros and Jacob Steinhardt},
99
+ year={2023},
100
+ eprint={2310.05916},
101
+ archivePrefix={arXiv},
102
+ primaryClass={cs.CV}
103
+ }
104
+ ```
API_CLIP/clip_prs/environment.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: prsclip
2
+ channels:
3
+ - pytorch
4
+ - nvidia
5
+ dependencies:
6
+ - python >= 3.8
7
+ - pytorch >= 1.13
8
+ - torchvision
9
+ - pytorch-cuda=11.7
10
+ - pip:
11
+ - timm
12
+ - einops
13
+ - ftfy
14
+ - scipy
15
+ - imageio
16
+ - h5py
17
+ - scikit-image
18
+ - scikit-learn
19
+ - opencv-python
API_CLIP/clip_prs/utils/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.append('API_CLIP/clip_prs')
3
+ from utils.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
4
+ from utils.factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_loss
5
+ from utils.factory import list_models, add_model_config, get_model_config, load_checkpoint
6
+ from utils.pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model, \
7
+ get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
8
+ from utils.tokenizer import SimpleTokenizer, tokenize, decode
9
+ from utils.transform import image_transform, AugmentationCfg
10
+ from utils.openai_templates import OPENAI_IMAGENET_TEMPLATES
API_CLIP/clip_prs/utils/binary_waterbirds.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import os.path
3
+ from typing import Any, Callable, cast, Dict, List, Optional, Tuple
4
+ from typing import Union
5
+
6
+ from PIL import Image
7
+ import pandas as pd
8
+ from torchvision.datasets import VisionDataset
9
+ import torch
10
+
11
+
12
+ def pil_loader(path: str) -> Image.Image:
13
+ # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
14
+ with open(path, "rb") as f:
15
+ img = Image.open(f)
16
+ return img.convert("RGB")
17
+
18
+ class BinaryWaterbirds(VisionDataset):
19
+ def __init__(
20
+ self,
21
+ root: str,
22
+ split: str,
23
+ loader: Callable[[str], Any] = pil_loader,
24
+ transform: Optional[Callable] = None,
25
+ target_transform: Optional[Callable] = None,
26
+ ) -> None:
27
+ super().__init__(root, transform=transform, target_transform=target_transform)
28
+
29
+ self.loader = loader
30
+ csv = pd.read_csv(os.path.join(root, 'metadata.csv'))
31
+ split = {'test': 2, 'valid': 1, 'train': 0}[split]
32
+ csv = csv[csv['split'] == split]
33
+ self.samples = [(os.path.join(root, csv.iloc[i]['img_filename']), csv.iloc[i]['y']) for i in range(len(csv))]
34
+
35
+ def __getitem__(self, index: int) -> Tuple[Any, Any]:
36
+ """
37
+ Args:
38
+ index (int): Index
39
+ Returns:
40
+ tuple: (sample, target) where target is class_index of the target class.
41
+ """
42
+ path, target = self.samples[index]
43
+ sample = self.loader(path)
44
+ if self.transform is not None:
45
+ sample = self.transform(sample)
46
+ if self.target_transform is not None:
47
+ target = self.target_transform(target)
48
+
49
+ return sample, target
50
+
51
+ def __len__(self) -> int:
52
+ return len(self.samples)
API_CLIP/clip_prs/utils/constants.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
2
+ OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
API_CLIP/clip_prs/utils/cub_classes.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ cub_classes = ['Black footed Albatross', 'Laysan Albatross', 'Sooty Albatross', 'Groove billed Ani', 'Crested Auklet', 'Least Auklet', 'Parakeet Auklet', 'Rhinoceros Auklet', 'Brewer Blackbird', 'Red winged Blackbird', 'Rusty Blackbird', 'Yellow headed Blackbird', 'Bobolink', 'Indigo Bunting', 'Lazuli Bunting', 'Painted Bunting', 'Cardinal', 'Spotted Catbird', 'Gray Catbird', 'Yellow breasted Chat', 'Eastern Towhee', 'Chuck will Widow', 'Brandt Cormorant', 'Red faced Cormorant', 'Pelagic Cormorant', 'Bronzed Cowbird', 'Shiny Cowbird', 'Brown Creeper', 'American Crow', 'Fish Crow', 'Black billed Cuckoo', 'Mangrove Cuckoo', 'Yellow billed Cuckoo', 'Gray crowned Rosy Finch', 'Purple Finch', 'Northern Flicker', 'Acadian Flycatcher', 'Great Crested Flycatcher', 'Least Flycatcher', 'Olive sided Flycatcher', 'Scissor tailed Flycatcher', 'Vermilion Flycatcher', 'Yellow bellied Flycatcher', 'Frigatebird', 'Northern Fulmar', 'Gadwall', 'American Goldfinch', 'European Goldfinch', 'Boat tailed Grackle', 'Eared Grebe', 'Horned Grebe', 'Pied billed Grebe', 'Western Grebe', 'Blue Grosbeak', 'Evening Grosbeak', 'Pine Grosbeak', 'Rose breasted Grosbeak', 'Pigeon Guillemot', 'California Gull', 'Glaucous winged Gull', 'Heermann Gull', 'Herring Gull', 'Ivory Gull', 'Ring billed Gull', 'Slaty backed Gull', 'Western Gull', 'Anna Hummingbird', 'Ruby throated Hummingbird', 'Rufous Hummingbird', 'Green Violetear', 'Long tailed Jaeger', 'Pomarine Jaeger', 'Blue Jay', 'Florida Jay', 'Green Jay', 'Dark eyed Junco', 'Tropical Kingbird', 'Gray Kingbird', 'Belted Kingfisher', 'Green Kingfisher', 'Pied Kingfisher', 'Ringed Kingfisher', 'White breasted Kingfisher', 'Red legged Kittiwake', 'Horned Lark', 'Pacific Loon', 'Mallard', 'Western Meadowlark', 'Hooded Merganser', 'Red breasted Merganser', 'Mockingbird', 'Nighthawk', 'Clark Nutcracker', 'White breasted Nuthatch', 'Baltimore Oriole', 'Hooded Oriole', 'Orchard Oriole', 'Scott Oriole', 'Ovenbird', 'Brown Pelican', 'White Pelican', 'Western Wood Pewee', 'Sayornis', 'American Pipit', 'Whip poor Will', 'Horned Puffin', 'Common Raven', 'White necked Raven', 'American Redstart', 'Geococcyx', 'Loggerhead Shrike', 'Great Grey Shrike', 'Baird Sparrow', 'Black throated Sparrow', 'Brewer Sparrow', 'Chipping Sparrow', 'Clay colored Sparrow', 'House Sparrow', 'Field Sparrow', 'Fox Sparrow', 'Grasshopper Sparrow', 'Harris Sparrow', 'Henslow Sparrow', 'Le Conte Sparrow', 'Lincoln Sparrow', 'Nelson Sharp tailed Sparrow', 'Savannah Sparrow', 'Seaside Sparrow', 'Song Sparrow', 'Tree Sparrow', 'Vesper Sparrow', 'White crowned Sparrow', 'White throated Sparrow', 'Cape Glossy Starling', 'Bank Swallow', 'Barn Swallow', 'Cliff Swallow', 'Tree Swallow', 'Scarlet Tanager', 'Summer Tanager', 'Artic Tern', 'Black Tern', 'Caspian Tern', 'Common Tern', 'Elegant Tern', 'Forsters Tern', 'Least Tern', 'Green tailed Towhee', 'Brown Thrasher', 'Sage Thrasher', 'Black capped Vireo', 'Blue headed Vireo', 'Philadelphia Vireo', 'Red eyed Vireo', 'Warbling Vireo', 'White eyed Vireo', 'Yellow throated Vireo', 'Bay breasted Warbler', 'Black and white Warbler', 'Black throated Blue Warbler', 'Blue winged Warbler', 'Canada Warbler', 'Cape May Warbler', 'Cerulean Warbler', 'Chestnut sided Warbler', 'Golden winged Warbler', 'Hooded Warbler', 'Kentucky Warbler', 'Magnolia Warbler', 'Mourning Warbler', 'Myrtle Warbler', 'Nashville Warbler', 'Orange crowned Warbler', 'Palm Warbler', 'Pine Warbler', 'Prairie Warbler', 'Prothonotary Warbler', 'Swainson Warbler', 'Tennessee Warbler', 'Wilson Warbler', 'Worm eating Warbler', 'Yellow Warbler', 'Northern Waterthrush', 'Louisiana Waterthrush', 'Bohemian Waxwing', 'Cedar Waxwing', 'American Three toed Woodpecker', 'Pileated Woodpecker', 'Red bellied Woodpecker', 'Red cockaded Woodpecker', 'Red headed Woodpecker', 'Downy Woodpecker', 'Bewick Wren', 'Cactus Wren', 'Carolina Wren', 'House Wren', 'Marsh Wren', 'Rock Wren', 'Winter Wren', 'Common Yellowthroat']
2
+ waterbird_classes = ['landbird', 'waterbird']
API_CLIP/clip_prs/utils/factory.py ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ import pathlib
5
+ import re
6
+ from copy import deepcopy
7
+ from pathlib import Path
8
+ from typing import Any, Dict, Optional, Tuple, Union
9
+
10
+ import torch
11
+
12
+ from utils.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
13
+ from utils.model import CLIP, convert_to_custom_text_state_dict,\
14
+ resize_pos_embed, get_cast_dtype
15
+ from utils.openai_models import load_openai_model
16
+ from utils.pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\
17
+ list_pretrained_tags_by_model, download_pretrained_from_hf
18
+ from utils.transform import image_transform, AugmentationCfg
19
+ from utils.tokenizer import HFTokenizer, tokenize
20
+
21
+
22
+ HF_HUB_PREFIX = 'hf-hub:'
23
+ _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
24
+ _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
25
+
26
+
27
+ def _natural_key(string_):
28
+ return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
29
+
30
+
31
+ def _rescan_model_configs():
32
+ global _MODEL_CONFIGS
33
+
34
+ config_ext = ('.json',)
35
+ config_files = []
36
+ for config_path in _MODEL_CONFIG_PATHS:
37
+ if config_path.is_file() and config_path.suffix in config_ext:
38
+ config_files.append(config_path)
39
+ elif config_path.is_dir():
40
+ for ext in config_ext:
41
+ config_files.extend(config_path.glob(f'*{ext}'))
42
+
43
+ for cf in config_files:
44
+ with open(cf, 'r') as f:
45
+ model_cfg = json.load(f)
46
+ if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
47
+ _MODEL_CONFIGS[cf.stem] = model_cfg
48
+
49
+ _MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
50
+
51
+
52
+ _rescan_model_configs() # initial populate of model config registry
53
+
54
+
55
+ def list_models():
56
+ """ enumerate available model architectures based on config files """
57
+ return list(_MODEL_CONFIGS.keys())
58
+
59
+
60
+ def add_model_config(path):
61
+ """ add model config path or file and update registry """
62
+ if not isinstance(path, Path):
63
+ path = Path(path)
64
+ _MODEL_CONFIG_PATHS.append(path)
65
+ _rescan_model_configs()
66
+
67
+
68
+ def get_model_config(model_name):
69
+ if model_name in _MODEL_CONFIGS:
70
+ return deepcopy(_MODEL_CONFIGS[model_name])
71
+ else:
72
+ return None
73
+
74
+
75
+ def get_tokenizer(model_name):
76
+ if model_name.startswith(HF_HUB_PREFIX):
77
+ tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):])
78
+ else:
79
+ config = get_model_config(model_name)
80
+ tokenizer = HFTokenizer(
81
+ config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
82
+ return tokenizer
83
+
84
+
85
+ def load_state_dict(checkpoint_path: str, map_location='cpu'):
86
+ checkpoint = torch.load(checkpoint_path, map_location=map_location)
87
+ if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
88
+ state_dict = checkpoint['state_dict']
89
+ else:
90
+ state_dict = checkpoint
91
+ if next(iter(state_dict.items()))[0].startswith('module'):
92
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
93
+ return state_dict
94
+
95
+
96
+ def load_checkpoint(model, checkpoint_path, strict=True):
97
+ state_dict = load_state_dict(checkpoint_path)
98
+ # detect old format and make compatible with new format
99
+ if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
100
+ state_dict = convert_to_custom_text_state_dict(state_dict)
101
+ resize_pos_embed(state_dict, model)
102
+ incompatible_keys = model.load_state_dict(state_dict, strict=strict)
103
+ return incompatible_keys
104
+
105
+
106
+ def create_model(
107
+ model_name: str,
108
+ pretrained: Optional[str] = None,
109
+ precision: str = 'fp32',
110
+ device: Union[str, torch.device] = 'cpu',
111
+ jit: bool = False,
112
+ force_quick_gelu: bool = False,
113
+ force_custom_text: bool = False,
114
+ force_patch_dropout: Optional[float] = None,
115
+ force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
116
+ pretrained_image: bool = False,
117
+ pretrained_hf: bool = True,
118
+ cache_dir: Optional[str] = None,
119
+ output_dict: Optional[bool] = None,
120
+ require_pretrained: bool = False,
121
+ ):
122
+ has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
123
+ if has_hf_hub_prefix:
124
+ model_id = model_name[len(HF_HUB_PREFIX):]
125
+ checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
126
+ config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir)
127
+
128
+ with open(config_path, 'r', encoding='utf-8') as f:
129
+ config = json.load(f)
130
+ pretrained_cfg = config['preprocess_cfg']
131
+ model_cfg = config['model_cfg']
132
+ else:
133
+ model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
134
+ checkpoint_path = None
135
+ pretrained_cfg = {}
136
+ model_cfg = None
137
+
138
+ if isinstance(device, str):
139
+ device = torch.device(device)
140
+
141
+ if pretrained and pretrained.lower() == 'openai':
142
+ logging.info(f'Loading pretrained {model_name} from OpenAI.')
143
+ model = load_openai_model(
144
+ model_name,
145
+ precision=precision,
146
+ device=device,
147
+ cache_dir=cache_dir,
148
+ )
149
+ else:
150
+ model_cfg = model_cfg or get_model_config(model_name)
151
+ if model_cfg is not None:
152
+ logging.info(f'Loaded {model_name} model config.')
153
+ else:
154
+ logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
155
+ raise RuntimeError(f'Model config for {model_name} not found.')
156
+
157
+ if force_quick_gelu:
158
+ # override for use of QuickGELU on non-OpenAI transformer models
159
+ model_cfg["quick_gelu"] = True
160
+
161
+ if force_patch_dropout is not None:
162
+ # override the default patch dropout value
163
+ model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout
164
+
165
+ if force_image_size is not None:
166
+ # override model config's image size
167
+ model_cfg["vision_cfg"]["image_size"] = force_image_size
168
+
169
+ is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {})
170
+ if pretrained_image:
171
+ if is_timm_model:
172
+ # pretrained weight loading for timm models set via vision_cfg
173
+ model_cfg['vision_cfg']['timm_model_pretrained'] = True
174
+ else:
175
+ assert False, 'pretrained image towers currently only supported for timm models'
176
+
177
+ # cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes
178
+ cast_dtype = get_cast_dtype(precision)
179
+ is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
180
+ custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model
181
+
182
+ if custom_text:
183
+ if is_hf_model:
184
+ model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
185
+ if "coca" in model_name:
186
+ raise ValueError('Coca is not implemented')
187
+ model = CoCa(**model_cfg, cast_dtype=cast_dtype)
188
+ else:
189
+ raise ValueError('CustomTextCLIP is not implemented')
190
+ model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
191
+ else:
192
+ model = CLIP(**model_cfg, cast_dtype=cast_dtype)
193
+
194
+ if precision in ("fp16", "bf16"):
195
+ dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
196
+ # manual mixed precision that matches original OpenAI behaviour
197
+ if is_timm_model:
198
+ # FIXME this is a bit janky, create timm based model in low-precision and
199
+ # then cast only LayerNormFp32 instances back to float32 so they don't break.
200
+ # Why? The convert_weights_to_lp fn only works with native models.
201
+ model.to(device=device, dtype=dtype)
202
+ from transformer import LayerNormFp32
203
+ def _convert_ln(m):
204
+ if isinstance(m, LayerNormFp32):
205
+ m.weight.data = m.weight.data.to(torch.float32)
206
+ m.bias.data = m.bias.data.to(torch.float32)
207
+ model.apply(_convert_ln)
208
+ else:
209
+ model.to(device=device)
210
+ convert_weights_to_lp(model, dtype=dtype)
211
+ elif precision in ("pure_fp16", "pure_bf16"):
212
+ dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
213
+ model.to(device=device, dtype=dtype)
214
+ else:
215
+ model.to(device=device)
216
+
217
+ pretrained_loaded = False
218
+ if pretrained:
219
+ checkpoint_path = ''
220
+ pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
221
+ if pretrained_cfg:
222
+ checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
223
+ elif os.path.exists(pretrained):
224
+ checkpoint_path = pretrained
225
+
226
+ if checkpoint_path:
227
+ logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
228
+ load_checkpoint(model, checkpoint_path)
229
+ else:
230
+ error_str = (
231
+ f'Pretrained weights ({pretrained}) not found for model {model_name}.'
232
+ f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
233
+ logging.warning(error_str)
234
+ raise RuntimeError(error_str)
235
+ pretrained_loaded = True
236
+ elif has_hf_hub_prefix:
237
+ logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
238
+ load_checkpoint(model, checkpoint_path)
239
+ pretrained_loaded = True
240
+
241
+ if require_pretrained and not pretrained_loaded:
242
+ # callers of create_model_from_pretrained always expect pretrained weights
243
+ raise RuntimeError(
244
+ f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')
245
+
246
+ # set image / mean metadata from pretrained_cfg if available, or use default
247
+ model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
248
+ model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
249
+
250
+ if output_dict and hasattr(model, "output_dict"):
251
+ model.output_dict = True
252
+
253
+ if jit:
254
+ model = torch.jit.script(model)
255
+
256
+ return model
257
+
258
+
259
+ def create_loss(args):
260
+ if args.distill:
261
+ return DistillClipLoss(
262
+ local_loss=args.local_loss,
263
+ gather_with_grad=args.gather_with_grad,
264
+ cache_labels=True,
265
+ rank=args.rank,
266
+ world_size=args.world_size,
267
+ use_horovod=args.horovod,
268
+ )
269
+ elif "coca" in args.model.lower():
270
+ return CoCaLoss(
271
+ caption_loss_weight=args.coca_caption_loss_weight,
272
+ clip_loss_weight=args.coca_contrastive_loss_weight,
273
+ local_loss=args.local_loss,
274
+ gather_with_grad=args.gather_with_grad,
275
+ cache_labels=True,
276
+ rank=args.rank,
277
+ world_size=args.world_size,
278
+ use_horovod=args.horovod,
279
+ )
280
+ return ClipLoss(
281
+ local_loss=args.local_loss,
282
+ gather_with_grad=args.gather_with_grad,
283
+ cache_labels=True,
284
+ rank=args.rank,
285
+ world_size=args.world_size,
286
+ use_horovod=args.horovod,
287
+ )
288
+
289
+
290
+ def create_model_and_transforms(
291
+ model_name: str,
292
+ pretrained: Optional[str] = None,
293
+ precision: str = 'fp32',
294
+ device: Union[str, torch.device] = 'cpu',
295
+ jit: bool = False,
296
+ force_quick_gelu: bool = False,
297
+ force_custom_text: bool = False,
298
+ force_patch_dropout: Optional[float] = None,
299
+ force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
300
+ pretrained_image: bool = False,
301
+ pretrained_hf: bool = True,
302
+ image_mean: Optional[Tuple[float, ...]] = None,
303
+ image_std: Optional[Tuple[float, ...]] = None,
304
+ aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
305
+ cache_dir: Optional[str] = None,
306
+ output_dict: Optional[bool] = None,
307
+ ):
308
+ model = create_model(
309
+ model_name,
310
+ pretrained,
311
+ precision=precision,
312
+ device=device,
313
+ jit=jit,
314
+ force_quick_gelu=force_quick_gelu,
315
+ force_custom_text=force_custom_text,
316
+ force_patch_dropout=force_patch_dropout,
317
+ force_image_size=force_image_size,
318
+ pretrained_image=pretrained_image,
319
+ pretrained_hf=pretrained_hf,
320
+ cache_dir=cache_dir,
321
+ output_dict=output_dict,
322
+ )
323
+
324
+ image_mean = image_mean or getattr(model.visual, 'image_mean', None)
325
+ image_std = image_std or getattr(model.visual, 'image_std', None)
326
+ preprocess_train = image_transform(
327
+ model.visual.image_size,
328
+ is_train=True,
329
+ mean=image_mean,
330
+ std=image_std,
331
+ aug_cfg=aug_cfg,
332
+ )
333
+ preprocess_val = image_transform(
334
+ model.visual.image_size,
335
+ is_train=False,
336
+ mean=image_mean,
337
+ std=image_std,
338
+ )
339
+
340
+ return model, preprocess_train, preprocess_val
341
+
342
+
343
+ def create_model_from_pretrained(
344
+ model_name: str,
345
+ pretrained: Optional[str] = None,
346
+ precision: str = 'fp32',
347
+ device: Union[str, torch.device] = 'cpu',
348
+ jit: bool = False,
349
+ force_quick_gelu: bool = False,
350
+ force_custom_text: bool = False,
351
+ force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
352
+ return_transform: bool = True,
353
+ image_mean: Optional[Tuple[float, ...]] = None,
354
+ image_std: Optional[Tuple[float, ...]] = None,
355
+ cache_dir: Optional[str] = None,
356
+ ):
357
+ model = create_model(
358
+ model_name,
359
+ pretrained,
360
+ precision=precision,
361
+ device=device,
362
+ jit=jit,
363
+ force_quick_gelu=force_quick_gelu,
364
+ force_custom_text=force_custom_text,
365
+ force_image_size=force_image_size,
366
+ cache_dir=cache_dir,
367
+ require_pretrained=True,
368
+ )
369
+
370
+ if not return_transform:
371
+ return model
372
+
373
+ image_mean = image_mean or getattr(model.visual, 'image_mean', None)
374
+ image_std = image_std or getattr(model.visual, 'image_std', None)
375
+ preprocess = image_transform(
376
+ model.visual.image_size,
377
+ is_train=False,
378
+ mean=image_mean,
379
+ std=image_std,
380
+ )
381
+
382
+ return model, preprocess
API_CLIP/clip_prs/utils/hook.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Text, Callable, List
2
+ from collections import defaultdict
3
+
4
+
5
+ class HookManager(object):
6
+ def __init__(self, hook_dict: Dict[Text, List[Callable]] = None):
7
+ self.hook_dict = hook_dict or defaultdict(list)
8
+ self.called = defaultdict(int)
9
+ self.forks = dict()
10
+
11
+ def register(self, name: Text, func: Callable):
12
+ assert name
13
+ found_successor = False
14
+ for header, d in self.forks.items():
15
+ if name.startswith(header.split('.')[0]+'.'):
16
+ next_ = name[len(header.split('.')[0]+'.'):].split('.')[0]
17
+ prev_ = header.split('.')[0]
18
+ if next_.isnumeric():
19
+ if prev_ + '.' + next_ == header:
20
+ d.register(name[len(header)+1:], func)
21
+ found_successor = True
22
+ else:
23
+ if next_ == '*':
24
+ d.register(name[len(prev_ + '.*')+1:], func)
25
+ found_successor = True
26
+ else:
27
+ d.register(name[len(header)+1:], func)
28
+ found_successor = True
29
+ if not found_successor:
30
+ self.hook_dict[name].append(func)
31
+
32
+ def unregister(self, name: Text, func: Callable):
33
+ assert name
34
+ found_successor = False
35
+ for header, d in self.forks.items():
36
+ if name.startswith(header.split('.')[0]+'.'):
37
+ next_ = name[len(header.split('.')[0]+'.'):].split('.')[0]
38
+ prev_ = header.split('.')[0]
39
+ if next_.isnumeric() and prev_ + '.' + next_ == header:
40
+ d.register(name[len(header)+1:], func)
41
+ elif next_ == '*':
42
+ d.register(name[len(prev_ + '.*')+1:], func)
43
+ else:
44
+ d.register(name[len(header)+1:], func)
45
+ found_successor = True
46
+ if not found_successor and func in self.hook_dict[name]:
47
+ self.hook_dict[name].remove(func)
48
+
49
+ def __call__(self, name: Text, **kwargs):
50
+ if name in self.hook_dict:
51
+ self.called[name] += 1
52
+ for function in self.hook_dict[name]:
53
+ ret = function(**kwargs)
54
+ if len(self.hook_dict[name]) > 1:
55
+ last = self.hook_dict[name][-1]
56
+ print(f'The last returned value comes from func {last}')
57
+ return ret
58
+ else:
59
+ return kwargs['ret']
60
+
61
+ def fork(self, name):
62
+ if name in self.forks:
63
+ raise ValueError(f'Forking with the same name is not allowed. Already forked with {name}.')
64
+ filtered_hooks = [(k[len(name)+1:], v) for k, v in self.hook_dict.items() if k.startswith(name+'.')]
65
+ filtered_hooks_d = defaultdict(list)
66
+ for i, j in filtered_hooks:
67
+ if isinstance(j, list):
68
+ filtered_hooks_d[i].extend(j)
69
+ else:
70
+ filtered_hooks_d[i].append(j)
71
+ new_hook = HookManager(filtered_hooks_d)
72
+ self.forks[name] = new_hook
73
+ return new_hook
74
+
75
+ def fork_iterative(self, name, iteration):
76
+ filtered_hooks = [(k[len(name+'.'+str(iteration))+1:], v) for k, v in self.hook_dict.items() if k.startswith(name+'.'+str(iteration)+'.')]
77
+ filtered_hooks += [(k[len(name+'.*')+1:], v) for k, v in self.hook_dict.items() if k.startswith(name+'.*.')]
78
+ filtered_hooks_d = defaultdict(list)
79
+ for i, j in filtered_hooks:
80
+ if isinstance(j, list):
81
+ filtered_hooks_d[i].extend(j)
82
+ else:
83
+ filtered_hooks_d[i].append(j)
84
+ new_hook = HookManager(filtered_hooks_d)
85
+ self.forks[name+'.'+str(iteration)] = new_hook
86
+ return new_hook
87
+
88
+ def finalize(self):
89
+ for name in self.hook_dict.keys():
90
+ if self.called[name] == 0:
91
+ raise ValueError(f'Hook {name} was registered but never used!')
API_CLIP/clip_prs/utils/imagenet_classes.py ADDED
@@ -0,0 +1 @@
 
 
1
+ imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", "box turtle", "banded gecko", "green iguana", "Carolina anole", "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", "American alligator", "triceratops", "worm snake", "ring-necked snake", "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", "freight car", "French horn", "frying pan", "fur coat", "garbage truck", "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"]
API_CLIP/clip_prs/utils/imagenet_segmentation.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.utils.data as data
4
+ import numpy as np
5
+
6
+ from torchvision.datasets import ImageNet
7
+
8
+ from PIL import Image, ImageFilter
9
+ import h5py
10
+ from glob import glob
11
+
12
+
13
+ class ImagenetSegmentation(data.Dataset):
14
+ CLASSES = 2
15
+
16
+ def __init__(self,
17
+ path,
18
+ transform=None,
19
+ target_transform=None):
20
+ self.path = path
21
+ self.transform = transform
22
+ self.target_transform = target_transform
23
+ self.h5py = None
24
+ tmp = h5py.File(path, 'r')
25
+ self.data_length = len(tmp['/value/img'])
26
+ tmp.close()
27
+ del tmp
28
+
29
+ def __getitem__(self, index):
30
+
31
+ if self.h5py is None:
32
+ self.h5py = h5py.File(self.path, 'r')
33
+
34
+ img = np.array(self.h5py[self.h5py['/value/img'][index, 0]]).transpose((2, 1, 0))
35
+ target = np.array(self.h5py[self.h5py[self.h5py['/value/gt'][index, 0]][0, 0]]).transpose((1, 0))
36
+
37
+ img = Image.fromarray(img).convert('RGB')
38
+ target = Image.fromarray(target)
39
+
40
+ if self.transform is not None:
41
+ img = self.transform(img)
42
+
43
+ if self.target_transform is not None:
44
+ target = np.array(self.target_transform(target)).astype('int32')
45
+ target = torch.from_numpy(target).long()
46
+
47
+ return img, target
48
+
49
+ def __len__(self):
50
+ return self.data_length
API_CLIP/clip_prs/utils/misc.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import repeat
2
+ import collections.abc
3
+
4
+ import torch
5
+ from torch import nn as nn
6
+ from torchvision.ops.misc import FrozenBatchNorm2d
7
+
8
+
9
+ def freeze_batch_norm_2d(module, module_match={}, name=''):
10
+ """
11
+ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
12
+ itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
13
+ returned. Otherwise, the module is walked recursively and submodules are converted in place.
14
+
15
+ Args:
16
+ module (torch.nn.Module): Any PyTorch module.
17
+ module_match (dict): Dictionary of full module names to freeze (all if empty)
18
+ name (str): Full module name (prefix)
19
+
20
+ Returns:
21
+ torch.nn.Module: Resulting module
22
+
23
+ Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
24
+ """
25
+ res = module
26
+ is_match = True
27
+ if module_match:
28
+ is_match = name in module_match
29
+ if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
30
+ res = FrozenBatchNorm2d(module.num_features)
31
+ res.num_features = module.num_features
32
+ res.affine = module.affine
33
+ if module.affine:
34
+ res.weight.data = module.weight.data.clone().detach()
35
+ res.bias.data = module.bias.data.clone().detach()
36
+ res.running_mean.data = module.running_mean.data
37
+ res.running_var.data = module.running_var.data
38
+ res.eps = module.eps
39
+ else:
40
+ for child_name, child in module.named_children():
41
+ full_child_name = '.'.join([name, child_name]) if name else child_name
42
+ new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
43
+ if new_child is not child:
44
+ res.add_module(child_name, new_child)
45
+ return res
46
+
47
+
48
+ # From PyTorch internals
49
+ def _ntuple(n):
50
+ def parse(x):
51
+ if isinstance(x, collections.abc.Iterable):
52
+ return x
53
+ return tuple(repeat(x, n))
54
+ return parse
55
+
56
+
57
+ to_1tuple = _ntuple(1)
58
+ to_2tuple = _ntuple(2)
59
+ to_3tuple = _ntuple(3)
60
+ to_4tuple = _ntuple(4)
61
+ to_ntuple = lambda n, x: _ntuple(n)(x)
62
+
63
+ # Replaces all linear layers with linear_replacement
64
+ # TODO: add int8 support for other linear layers including attn and convnets
65
+ def replace_linear(model, linear_replacement, include_modules=['c_fc', 'c_proj'], copy_weights=True):
66
+ for name, module in model.named_children():
67
+ if len(list(module.children())) > 0:
68
+ replace_linear(module, linear_replacement, include_modules, copy_weights)
69
+
70
+ if isinstance(module, torch.nn.Linear) and name in include_modules:
71
+ old_module = model._modules[name]
72
+ model._modules[name] = linear_replacement(
73
+ module.in_features,
74
+ module.out_features,
75
+ module.bias is not None,
76
+ )
77
+ if copy_weights:
78
+ model._modules[name].weight.data.copy_(old_module.weight.data)
79
+ if model._modules[name].bias is not None:
80
+ model._modules[name].bias.data.copy_(old_module.bias)
81
+
82
+ return model
83
+
84
+ def convert_int8_model_to_inference_mode(model):
85
+ for m in model.modules():
86
+ if hasattr(m, 'prepare_for_eval'):
87
+ int8_original_dtype = m.weight.dtype
88
+ m.prepare_for_eval()
89
+ m.int8_original_dtype = int8_original_dtype
90
+
91
+
92
+ def accuracy(output, target, topk=(1,)):
93
+ """
94
+ Compute top-k accuracy
95
+
96
+ output: torch.Tensor
97
+ shape (N, C) where N is the number of examples, C the number of classes.
98
+ these are the logits.
99
+
100
+ target: torch.Tensor
101
+ shape (N,) where N is the number of examples. Groundtruth class id of each example.
102
+
103
+ topk: tuple
104
+ which topk to compute, e.g., topk=(1,5) will compute top-1 and top-5 accuracies
105
+
106
+ Returns
107
+ -------
108
+
109
+ list of top-k accuracies in the same order as `topk`
110
+ """
111
+ pred = output.topk(max(topk), 1, True, True)[1].t()
112
+ correct = pred.eq(target.view(1, -1).expand_as(pred))
113
+ n = len(target)
114
+ return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) / n for k in topk]
API_CLIP/clip_prs/utils/model.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLIP Model
2
+
3
+ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+ from dataclasses import dataclass
6
+ import logging
7
+ import math
8
+ from typing import Optional, Tuple, Union, Text
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from torch import nn
14
+ from torch.utils.checkpoint import checkpoint
15
+
16
+
17
+ from utils.modified_resnet import ModifiedResNet
18
+ from utils.timm_model import TimmModel
19
+ from utils.transformer import LayerNorm, QuickGELU, VisionTransformer, TextTransformer, Attention
20
+ from utils.misc import to_2tuple
21
+ from utils.hook import HookManager
22
+
23
+
24
+ @dataclass
25
+ class CLIPVisionCfg:
26
+ layers: Union[Tuple[int, int, int, int], int] = 12
27
+ width: int = 768
28
+ head_width: int = 64
29
+ mlp_ratio: float = 4.0
30
+ patch_size: int = 16
31
+ image_size: Union[Tuple[int, int], int] = 224
32
+
33
+ ls_init_value: Optional[float] = None # layer scale initial value
34
+ patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
35
+ input_patchnorm: bool = False # whether to use dual patchnorm - would only apply the input layernorm on each patch, as post-layernorm already exist in original clip vit design
36
+ global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
37
+ attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer
38
+ n_queries: int = 256 # n_queries for attentional pooler
39
+ attn_pooler_heads: int = 8 # n heads for attentional_pooling
40
+ output_tokens: bool = False
41
+
42
+ timm_model_name: str = None # a valid model name overrides layers, width, patch_size
43
+ timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
44
+ timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
45
+ timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
46
+ timm_proj_bias: bool = False # enable bias final projection
47
+ timm_drop: float = 0. # head dropout
48
+ timm_drop_path: Optional[float] = None # backbone stochastic depth
49
+
50
+
51
+
52
+
53
+ def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
54
+ """Convert applicable model parameters to low-precision (bf16 or fp16)"""
55
+
56
+ def _convert_weights(l):
57
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
58
+ l.weight.data = l.weight.data.to(dtype)
59
+ if l.bias is not None:
60
+ l.bias.data = l.bias.data.to(dtype)
61
+
62
+ if isinstance(l, (nn.MultiheadAttention, Attention)):
63
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
64
+ tensor = getattr(l, attr)
65
+ if tensor is not None:
66
+ tensor.data = tensor.data.to(dtype)
67
+
68
+ if isinstance(l, (CLIP, TextTransformer)):
69
+ # convert text nn.Parameter projections
70
+ attr = getattr(l, "text_projection", None)
71
+ if attr is not None:
72
+ attr.data = attr.data.to(dtype)
73
+
74
+ if isinstance(l, VisionTransformer):
75
+ # convert vision nn.Parameter projections
76
+ attr = getattr(l, "proj", None)
77
+ if attr is not None:
78
+ attr.data = attr.data.to(dtype)
79
+
80
+ model.apply(_convert_weights)
81
+
82
+ convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
83
+
84
+
85
+ @dataclass
86
+ class CLIPTextCfg:
87
+ context_length: int = 77
88
+ vocab_size: int = 49408
89
+ width: int = 512
90
+ heads: int = 8
91
+ layers: int = 12
92
+ ls_init_value: Optional[float] = None # layer scale initial value
93
+ hf_model_name: str = None
94
+ hf_tokenizer_name: str = None
95
+ hf_model_pretrained: bool = True
96
+ proj: str = 'mlp'
97
+ pooler_type: str = 'mean_pooler'
98
+ embed_cls: bool = False
99
+ pad_id: int = 0
100
+ output_tokens: bool = False
101
+
102
+
103
+ def get_cast_dtype(precision: str):
104
+ cast_dtype = None
105
+ if precision == 'bf16':
106
+ cast_dtype = torch.bfloat16
107
+ elif precision == 'fp16':
108
+ cast_dtype = torch.float16
109
+ return cast_dtype
110
+
111
+
112
+ def get_input_dtype(precision: str):
113
+ input_dtype = None
114
+ if precision in ('bf16', 'pure_bf16'):
115
+ input_dtype = torch.bfloat16
116
+ elif precision in ('fp16', 'pure_fp16'):
117
+ input_dtype = torch.float16
118
+ return input_dtype
119
+
120
+
121
+ def _build_vision_tower(
122
+ embed_dim: int,
123
+ vision_cfg: CLIPVisionCfg,
124
+ quick_gelu: bool = False,
125
+ cast_dtype: Optional[torch.dtype] = None,
126
+ hook: Optional[HookManager]= None,
127
+ ):
128
+ if isinstance(vision_cfg, dict):
129
+ vision_cfg = CLIPVisionCfg(**vision_cfg)
130
+
131
+ # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
132
+ # memory efficient in recent PyTorch releases (>= 1.10).
133
+ # NOTE: timm models always use native GELU regardless of quick_gelu flag.
134
+ act_layer = QuickGELU if quick_gelu else nn.GELU
135
+
136
+ if vision_cfg.timm_model_name:
137
+ visual = TimmModel(
138
+ vision_cfg.timm_model_name,
139
+ pretrained=vision_cfg.timm_model_pretrained,
140
+ pool=vision_cfg.timm_pool,
141
+ proj=vision_cfg.timm_proj,
142
+ proj_bias=vision_cfg.timm_proj_bias,
143
+ drop=vision_cfg.timm_drop,
144
+ drop_path=vision_cfg.timm_drop_path,
145
+ patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
146
+ embed_dim=embed_dim,
147
+ image_size=vision_cfg.image_size,
148
+ hook=hook,
149
+ )
150
+ elif isinstance(vision_cfg.layers, (tuple, list)):
151
+ vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
152
+ visual = ModifiedResNet(
153
+ layers=vision_cfg.layers,
154
+ output_dim=embed_dim,
155
+ heads=vision_heads,
156
+ image_size=vision_cfg.image_size,
157
+ width=vision_cfg.width,
158
+ hook=hook,
159
+ )
160
+ else:
161
+ vision_heads = vision_cfg.width // vision_cfg.head_width
162
+ norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
163
+ visual = VisionTransformer(
164
+ image_size=vision_cfg.image_size,
165
+ patch_size=vision_cfg.patch_size,
166
+ width=vision_cfg.width,
167
+ layers=vision_cfg.layers,
168
+ heads=vision_heads,
169
+ mlp_ratio=vision_cfg.mlp_ratio,
170
+ ls_init_value=vision_cfg.ls_init_value,
171
+ patch_dropout=vision_cfg.patch_dropout,
172
+ input_patchnorm=vision_cfg.input_patchnorm,
173
+ global_average_pool=vision_cfg.global_average_pool,
174
+ attentional_pool=vision_cfg.attentional_pool,
175
+ n_queries=vision_cfg.n_queries,
176
+ attn_pooler_heads=vision_cfg.attn_pooler_heads,
177
+ output_tokens=vision_cfg.output_tokens,
178
+ output_dim=embed_dim,
179
+ act_layer=act_layer,
180
+ norm_layer=norm_layer,
181
+ hook=hook,
182
+ )
183
+
184
+ return visual
185
+
186
+
187
+ def _build_text_tower(
188
+ embed_dim: int,
189
+ text_cfg: CLIPTextCfg,
190
+ quick_gelu: bool = False,
191
+ cast_dtype: Optional[torch.dtype] = None,
192
+ hook: Optional[HookManager] = None,
193
+ ):
194
+ if isinstance(text_cfg, dict):
195
+ text_cfg = CLIPTextCfg(**text_cfg)
196
+
197
+ if text_cfg.hf_model_name:
198
+ from hf_model import HFTextEncoder
199
+ text = HFTextEncoder(
200
+ text_cfg.hf_model_name,
201
+ output_dim=embed_dim,
202
+ proj=text_cfg.proj,
203
+ pooler_type=text_cfg.pooler_type,
204
+ pretrained=text_cfg.hf_model_pretrained,
205
+ output_tokens=text_cfg.output_tokens,
206
+ )
207
+ else:
208
+ act_layer = QuickGELU if quick_gelu else nn.GELU
209
+ norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
210
+
211
+ text = TextTransformer(
212
+ context_length=text_cfg.context_length,
213
+ vocab_size=text_cfg.vocab_size,
214
+ width=text_cfg.width,
215
+ heads=text_cfg.heads,
216
+ layers=text_cfg.layers,
217
+ ls_init_value=text_cfg.ls_init_value,
218
+ output_dim=embed_dim,
219
+ embed_cls=text_cfg.embed_cls,
220
+ output_tokens=text_cfg.output_tokens,
221
+ pad_id=text_cfg.pad_id,
222
+ act_layer=act_layer,
223
+ norm_layer=norm_layer,
224
+ )
225
+ return text
226
+
227
+
228
+ class CLIP(nn.Module):
229
+ output_dict: torch.jit.Final[bool]
230
+
231
+ def __init__(
232
+ self,
233
+ embed_dim: int,
234
+ vision_cfg: CLIPVisionCfg,
235
+ text_cfg: CLIPTextCfg,
236
+ quick_gelu: bool = False,
237
+ cast_dtype: Optional[torch.dtype] = None,
238
+ output_dict: bool = False,
239
+ hook: Optional[HookManager] = None,
240
+ ):
241
+ super().__init__()
242
+ self.hook_manager = hook or HookManager()
243
+ self.output_dict = output_dict
244
+ self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype, self.hook_manager.fork('visual'))
245
+
246
+ text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype, self.hook_manager.fork('textual'))
247
+ self.transformer = text.transformer
248
+ self.context_length = text.context_length
249
+ self.vocab_size = text.vocab_size
250
+ self.token_embedding = text.token_embedding
251
+ self.positional_embedding = text.positional_embedding
252
+ self.ln_final = text.ln_final
253
+ self.text_projection = text.text_projection
254
+ self.register_buffer('attn_mask', text.attn_mask, persistent=False)
255
+
256
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
257
+
258
+ @torch.jit.ignore
259
+ def set_grad_checkpointing(self, enable=True):
260
+ self.visual.set_grad_checkpointing(enable)
261
+ self.transformer.grad_checkpointing = enable
262
+
263
+ def encode_image(self, image, normalize: bool = False, attn_method: Text = 'direct'):
264
+ features = self.visual(image, attn_method=attn_method)
265
+ return F.normalize(features, dim=-1) if normalize else features
266
+
267
+ def encode_text(self, text, normalize: bool = False):
268
+ cast_dtype = self.transformer.get_cast_dtype()
269
+
270
+ x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
271
+
272
+ x = x + self.positional_embedding.to(cast_dtype)
273
+ # x = x.permute(1, 0, 2) # NLD -> LND
274
+ x = self.transformer(x, attn_mask=self.attn_mask)
275
+ # x = x.permute(1, 0, 2) # LND -> NLD
276
+ x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
277
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
278
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
279
+ return F.normalize(x, dim=-1) if normalize else x
280
+
281
+ def forward(
282
+ self,
283
+ image: Optional[torch.Tensor] = None,
284
+ text: Optional[torch.Tensor] = None,
285
+ ):
286
+ image_features = self.encode_image(image, normalize=True) if image is not None else None
287
+ text_features = self.encode_text(text, normalize=True) if text is not None else None
288
+ if self.output_dict:
289
+ return {
290
+ "image_features": image_features,
291
+ "text_features": text_features,
292
+ "logit_scale": self.logit_scale.exp()
293
+ }
294
+ return image_features, text_features, self.logit_scale.exp()
295
+
296
+
297
+ # used to maintain checkpoint compatibility
298
+ def convert_to_custom_text_state_dict(state_dict: dict):
299
+ if 'text_projection' in state_dict:
300
+ # old format state_dict, move text tower -> .text
301
+ new_state_dict = {}
302
+ for k, v in state_dict.items():
303
+ if any(k.startswith(p) for p in (
304
+ 'text_projection',
305
+ 'positional_embedding',
306
+ 'token_embedding',
307
+ 'transformer',
308
+ 'ln_final',
309
+ )):
310
+ k = 'text.' + k
311
+ new_state_dict[k] = v
312
+ return new_state_dict
313
+ return state_dict
314
+
315
+
316
+ def build_model_from_openai_state_dict(
317
+ state_dict: dict,
318
+ quick_gelu=True,
319
+ cast_dtype=torch.float16,
320
+ ):
321
+ vit = "visual.proj" in state_dict
322
+
323
+ if vit:
324
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
325
+ vision_layers = len(
326
+ [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
327
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
328
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
329
+ image_size = vision_patch_size * grid_size
330
+ else:
331
+ counts: list = [
332
+ len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
333
+ vision_layers = tuple(counts)
334
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
335
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
336
+ vision_patch_size = None
337
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
338
+ image_size = output_width * 32
339
+
340
+ embed_dim = state_dict["text_projection"].shape[1]
341
+ context_length = state_dict["positional_embedding"].shape[0]
342
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
343
+ transformer_width = state_dict["ln_final.weight"].shape[0]
344
+ transformer_heads = transformer_width // 64
345
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
346
+
347
+ vision_cfg = CLIPVisionCfg(
348
+ layers=vision_layers,
349
+ width=vision_width,
350
+ patch_size=vision_patch_size,
351
+ image_size=image_size,
352
+ )
353
+ text_cfg = CLIPTextCfg(
354
+ context_length=context_length,
355
+ vocab_size=vocab_size,
356
+ width=transformer_width,
357
+ heads=transformer_heads,
358
+ layers=transformer_layers,
359
+ )
360
+ model = CLIP(
361
+ embed_dim,
362
+ vision_cfg=vision_cfg,
363
+ text_cfg=text_cfg,
364
+ quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
365
+ cast_dtype=cast_dtype,
366
+ )
367
+
368
+ for key in ["input_resolution", "context_length", "vocab_size"]:
369
+ state_dict.pop(key, None)
370
+
371
+ convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
372
+ model.load_state_dict(state_dict)
373
+ return model.eval()
374
+
375
+
376
+ def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
377
+ # Rescale the grid of position embeddings when loading from state_dict
378
+ old_pos_embed = state_dict.get('visual.positional_embedding', None)
379
+ if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
380
+ return
381
+ grid_size = to_2tuple(model.visual.grid_size)
382
+ extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
383
+ new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
384
+ if new_seq_len == old_pos_embed.shape[0]:
385
+ return
386
+
387
+ if extra_tokens:
388
+ pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
389
+ else:
390
+ pos_emb_tok, pos_emb_img = None, old_pos_embed
391
+ old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
392
+
393
+ logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
394
+ pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
395
+ pos_emb_img = F.interpolate(
396
+ pos_emb_img,
397
+ size=grid_size,
398
+ mode=interpolation,
399
+ antialias=antialias,
400
+ align_corners=False,
401
+ )
402
+ pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
403
+ if pos_emb_tok is not None:
404
+ new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
405
+ else:
406
+ new_pos_embed = pos_emb_img
407
+ state_dict['visual.positional_embedding'] = new_pos_embed
API_CLIP/clip_prs/utils/model_configs/EVA01-g-14-plus.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "timm_model_name": "eva_giant_patch14_224",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 1024,
14
+ "heads": 16,
15
+ "layers": 24
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/EVA01-g-14.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "timm_model_name": "eva_giant_patch14_224",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 768,
14
+ "heads": 12,
15
+ "layers": 12
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/EVA02-B-16.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "timm_model_name": "eva02_base_patch16_clip_224",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 512,
14
+ "heads": 8,
15
+ "layers": 12
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/EVA02-E-14-plus.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "timm_model_name": "eva02_enormous_patch14_clip_224",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 1280,
14
+ "heads": 20,
15
+ "layers": 32
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/EVA02-E-14.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "timm_model_name": "eva02_enormous_patch14_clip_224",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 1024,
14
+ "heads": 16,
15
+ "layers": 24
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/EVA02-L-14-336.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 336,
5
+ "timm_model_name": "eva02_large_patch14_clip_336",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 768,
14
+ "heads": 12,
15
+ "layers": 12
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/EVA02-L-14.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "timm_model_name": "eva02_large_patch14_clip_224",
6
+ "timm_model_pretrained": false,
7
+ "timm_pool": "token",
8
+ "timm_proj": null
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 768,
14
+ "heads": 12,
15
+ "layers": 12
16
+ },
17
+ "custom_text": true
18
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-B-16-plus-240.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 640,
3
+ "vision_cfg": {
4
+ "image_size": 240,
5
+ "layers": 12,
6
+ "width": 896,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 640,
13
+ "heads": 10,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-B-16-plus.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 640,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 896,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 640,
13
+ "heads": 10,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-B-16.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 512,
13
+ "heads": 8,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-B-32-plus-256.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 640,
3
+ "vision_cfg": {
4
+ "image_size": 256,
5
+ "layers": 12,
6
+ "width": 896,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 640,
13
+ "heads": 10,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-B-32-quickgelu.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "quick_gelu": true,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": 12,
7
+ "width": 768,
8
+ "patch_size": 32
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 512,
14
+ "heads": 8,
15
+ "layers": 12
16
+ }
17
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-B-32.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 512,
13
+ "heads": 8,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-H-14.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 32,
6
+ "width": 1280,
7
+ "head_width": 80,
8
+ "patch_size": 14
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 1024,
14
+ "heads": 16,
15
+ "layers": 24
16
+ }
17
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-H-16.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 32,
6
+ "width": 1280,
7
+ "head_width": 80,
8
+ "patch_size": 16
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 1024,
14
+ "heads": 16,
15
+ "layers": 24
16
+ }
17
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-L-14-280.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 280,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 14
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 768,
13
+ "heads": 12,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-L-14-336.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 336,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 14
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 768,
13
+ "heads": 12,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-L-14.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 14
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 768,
13
+ "heads": 12,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-L-16-320.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 320,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 768,
13
+ "heads": 12,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-L-16.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 768,
13
+ "heads": 12,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-M-16-alt.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 384,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 512,
7
+ "patch_size": 16,
8
+ "ls_init_value": 1e-4
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 384,
14
+ "heads": 6,
15
+ "layers": 12
16
+ }
17
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-M-16.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 512,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 512,
13
+ "heads": 8,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-M-32-alt.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 384,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 512,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 384,
13
+ "heads": 6,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-M-32.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 512,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 512,
13
+ "heads": 8,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-S-16-alt.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 256,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 384,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 256,
13
+ "heads": 4,
14
+ "layers": 10
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-S-16.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 384,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 384,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 384,
13
+ "heads": 6,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-S-32-alt.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 256,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 384,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 256,
13
+ "heads": 4,
14
+ "layers": 10
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-S-32.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 384,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 384,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 384,
13
+ "heads": 6,
14
+ "layers": 12
15
+ }
16
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-bigG-14.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1280,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 48,
6
+ "width": 1664,
7
+ "head_width": 104,
8
+ "mlp_ratio": 4.9231,
9
+ "patch_size": 14
10
+ },
11
+ "text_cfg": {
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "width": 1280,
15
+ "heads": 20,
16
+ "layers": 32
17
+ }
18
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-e-14.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1280,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 56,
6
+ "width": 1792,
7
+ "head_width": 112,
8
+ "mlp_ratio": 8.5715,
9
+ "patch_size": 14
10
+ },
11
+ "text_cfg": {
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "width": 1280,
15
+ "heads": 20,
16
+ "layers": 36
17
+ }
18
+ }
API_CLIP/clip_prs/utils/model_configs/ViT-g-14.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 40,
6
+ "width": 1408,
7
+ "head_width": 88,
8
+ "mlp_ratio": 4.3637,
9
+ "patch_size": 14
10
+ },
11
+ "text_cfg": {
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "width": 1024,
15
+ "heads": 16,
16
+ "layers": 24
17
+ }
18
+ }
API_CLIP/clip_prs/utils/model_configs/coca_ViT-B-32.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 32,
8
+ "attentional_pool": true,
9
+ "attn_pooler_heads": 8,
10
+ "output_tokens": true
11
+ },
12
+ "text_cfg": {
13
+ "context_length": 76,
14
+ "vocab_size": 49408,
15
+ "width": 512,
16
+ "heads": 8,
17
+ "layers": 12,
18
+ "embed_cls": true,
19
+ "output_tokens": true
20
+ },
21
+ "multimodal_cfg": {
22
+ "context_length": 76,
23
+ "vocab_size": 49408,
24
+ "width": 512,
25
+ "heads": 8,
26
+ "layers": 12,
27
+ "attn_pooler_heads": 8
28
+ },
29
+ "custom_text": true
30
+ }
API_CLIP/clip_prs/utils/model_configs/coca_ViT-L-14.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 14,
8
+ "attentional_pool": true,
9
+ "attn_pooler_heads": 8,
10
+ "output_tokens": true
11
+ },
12
+ "text_cfg": {
13
+ "context_length": 76,
14
+ "vocab_size": 49408,
15
+ "width": 768,
16
+ "heads": 12,
17
+ "layers": 12,
18
+ "embed_cls": true,
19
+ "output_tokens": true
20
+ },
21
+ "multimodal_cfg": {
22
+ "context_length": 76,
23
+ "vocab_size": 49408,
24
+ "width": 768,
25
+ "heads": 12,
26
+ "layers": 12,
27
+ "attn_pooler_heads": 12
28
+ },
29
+ "custom_text": true
30
+ }
API_CLIP/clip_prs/utils/model_configs/coca_base.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "multimodal_cfg": {
4
+ "width": 768,
5
+ "context_length": 76,
6
+ "vocab_size": 64000,
7
+ "mlp_ratio": 4,
8
+ "layers": 12,
9
+ "dim_head": 64,
10
+ "heads": 12,
11
+ "n_queries": 256,
12
+ "attn_pooler_heads": 8
13
+ },
14
+ "vision_cfg": {
15
+ "image_size": 288,
16
+ "layers": 12,
17
+ "width": 768,
18
+ "patch_size": 18,
19
+ "output_tokens": true
20
+ },
21
+ "text_cfg": {
22
+ "context_length": 76,
23
+ "vocab_size": 64000,
24
+ "layers": 12,
25
+ "heads": 12,
26
+ "width": 768,
27
+ "embed_cls": true,
28
+ "output_tokens": true
29
+ },
30
+ "custom_text": true
31
+ }
API_CLIP/clip_prs/utils/model_configs/coca_roberta-ViT-B-32.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 32,
8
+ "output_tokens": true
9
+ },
10
+ "text_cfg": {
11
+ "hf_model_name": "roberta-base",
12
+ "hf_tokenizer_name": "roberta-base",
13
+ "proj": "linear",
14
+ "width": 768,
15
+ "output_tokens": true
16
+ },
17
+ "multimodal_cfg": {
18
+ "context_length": 76,
19
+ "width": 768,
20
+ "heads": 8,
21
+ "layers": 12
22
+ },
23
+ "custom_text": true
24
+ }
API_CLIP/clip_prs/utils/model_configs/mt5-base-ViT-B-32.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "hf_model_name": "google/mt5-base",
11
+ "hf_tokenizer_name": "google/mt5-base",
12
+ "proj": "mlp",
13
+ "pooler_type": "mean_pooler"
14
+ }
15
+ }