Spaces:
Sleeping
Sleeping
roqayahassan
commited on
Upload 4 files
Browse files- app.py +30 -61
- requirements.txt.txt +1 -0
- spam_classifier_model.joblib +3 -0
- vectorizer.joblib +3 -0
app.py
CHANGED
@@ -1,64 +1,33 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# Your Gradio app code here
|
3 |
+
import gradio as gr
|
4 |
+
import joblib
|
5 |
+
import numpy as np
|
6 |
+
from scipy.sparse import hstack
|
7 |
+
|
8 |
+
# Load your model and vectorizer
|
9 |
+
model = joblib.load("spam_classifier_model.joblib")
|
10 |
+
vectorizer = joblib.load("vectorizer.joblib")
|
11 |
+
|
12 |
+
def predict_spam(clean_body, num_urls, has_attachment):
|
13 |
+
X_text = vectorizer.transform([clean_body])
|
14 |
+
X_combined = hstack([
|
15 |
+
X_text,
|
16 |
+
np.array([num_urls]).reshape(-1, 1),
|
17 |
+
np.array([has_attachment]).reshape(-1, 1)
|
18 |
+
])
|
19 |
+
prediction = model.predict(X_combined)[0]
|
20 |
+
return "Spam" if prediction == 1 else "Not Spam"
|
21 |
+
|
22 |
+
interface = gr.Interface(
|
23 |
+
fn=predict_spam,
|
24 |
+
inputs=[
|
25 |
+
gr.Textbox(lines=5, label="Email Body"),
|
26 |
+
gr.Slider(0, 50, step=1, label="Number of URLs"),
|
27 |
+
gr.Radio([0, 1], label="Has Attachment (0 = No, 1 = Yes)")
|
|
|
|
|
|
|
28 |
],
|
29 |
+
outputs=gr.Text(label="Prediction"),
|
30 |
+
title="Spam Email Classifier",
|
31 |
+
description="Classify emails as Spam or Not Spam."
|
32 |
)
|
33 |
+
interface.launch()
|
|
|
|
|
|
requirements.txt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
joblib
|
spam_classifier_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72856a4d31bae421850b6fc8a0ad699f18ff8fbc1e95099db009050c08f68a9e
|
3 |
+
size 24895
|
vectorizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6c6b583f977afd0ac49ef4b7878e78a897e5e7cdbbc96e7ca5aa1d443044ee2
|
3 |
+
size 110204
|