roqayahassan commited on
Commit
ccb7d79
·
verified ·
1 Parent(s): d8a3284

Upload 4 files

Browse files
app.py CHANGED
@@ -1,64 +1,33 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ # Your Gradio app code here
3
+ import gradio as gr
4
+ import joblib
5
+ import numpy as np
6
+ from scipy.sparse import hstack
7
+
8
+ # Load your model and vectorizer
9
+ model = joblib.load("spam_classifier_model.joblib")
10
+ vectorizer = joblib.load("vectorizer.joblib")
11
+
12
+ def predict_spam(clean_body, num_urls, has_attachment):
13
+ X_text = vectorizer.transform([clean_body])
14
+ X_combined = hstack([
15
+ X_text,
16
+ np.array([num_urls]).reshape(-1, 1),
17
+ np.array([has_attachment]).reshape(-1, 1)
18
+ ])
19
+ prediction = model.predict(X_combined)[0]
20
+ return "Spam" if prediction == 1 else "Not Spam"
21
+
22
+ interface = gr.Interface(
23
+ fn=predict_spam,
24
+ inputs=[
25
+ gr.Textbox(lines=5, label="Email Body"),
26
+ gr.Slider(0, 50, step=1, label="Number of URLs"),
27
+ gr.Radio([0, 1], label="Has Attachment (0 = No, 1 = Yes)")
 
 
 
28
  ],
29
+ outputs=gr.Text(label="Prediction"),
30
+ title="Spam Email Classifier",
31
+ description="Classify emails as Spam or Not Spam."
32
  )
33
+ interface.launch()
 
 
 
requirements.txt.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ joblib
spam_classifier_model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72856a4d31bae421850b6fc8a0ad699f18ff8fbc1e95099db009050c08f68a9e
3
+ size 24895
vectorizer.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6c6b583f977afd0ac49ef4b7878e78a897e5e7cdbbc96e7ca5aa1d443044ee2
3
+ size 110204