Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,829 Bytes
aea26c8 12c1e62 aea26c8 75ff838 aea26c8 cb6a364 aea26c8 6460264 be9e67d aea26c8 3c58cf3 aea26c8 3c58cf3 aea26c8 3c58cf3 aea26c8 80d1fb2 6460264 80d1fb2 e20d68e 6460264 aea26c8 e20d68e aea26c8 e20d68e aea26c8 e20d68e aea26c8 e20d68e aea26c8 e20d68e 6460264 aea26c8 7ed9dd3 d41e8b4 aea26c8 7ed9dd3 aea26c8 6460264 aea26c8 5839edf 0fdb354 aea26c8 be9e67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import sys
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
# os.system('pip install /home/user/app/pyrender')
# sys.path.append('/home/user/app/pyrender')
import gradio as gr
import spaces
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from pathlib import Path
import argparse
import json
from typing import Dict, Optional
from wilor.models import WiLoR, load_wilor
from wilor.utils import recursive_to
from wilor.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
from wilor.utils.renderer import Renderer, cam_crop_to_full
device = torch.device('cpu') if torch.cuda.is_available() else torch.device('cuda')
LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
model, model_cfg = load_wilor(checkpoint_path = './pretrained_models/wilor_final.ckpt' , cfg_path= './pretrained_models/model_config.yaml')
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.mano.faces)
model = model.to(device)
model.eval()
detector = YOLO('./pretrained_models/detector.pt').to(device)
def render_reconstruction(image, conf, IoU_threshold=0.5):
input_img, num_dets, reconstructions = run_wilow_model(image, conf, IoU_threshold=0.5)
if num_dets> 0:
# Render front view
misc_args = dict(
mesh_base_color=LIGHT_PURPLE,
scene_bg_color=(1, 1, 1),
focal_length=reconstructions['focal'],
)
cam_view = renderer.render_rgba_multiple(reconstructions['verts'],
cam_t=reconstructions['cam_t'],
render_res=reconstructions['img_size'],
is_right=reconstructions['right'], **misc_args)
# Overlay image
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
return input_img_overlay, f'{num_dets} hands detected'
else:
return input_img, f'{num_dets} hands detected'
@spaces.GPU()
def run_wilow_model(image, conf, IoU_threshold=0.5):
img_cv2 = image[...,::-1]
img_vis = image.copy()
detections = detector(img_cv2, conf=conf, verbose=False, iou=IoU_threshold)[0]
bboxes = []
is_right = []
for det in detections:
Bbox = det.boxes.data.cpu().detach().squeeze().numpy()
Conf = det.boxes.conf.data.cpu().detach()[0].numpy().reshape(-1).astype(np.float16)
Side = det.boxes.cls.data.cpu().detach()
#Bbox[:2] -= np.int32(0.1 * Bbox[:2])
#Bbox[2:] += np.int32(0.1 * Bbox[ 2:])
is_right.append(det.boxes.cls.cpu().detach().squeeze().item())
bboxes.append(Bbox[:4].tolist())
color = (255*0.208, 255*0.647 ,255*0.603 ) if Side==0. else (255*1, 255*0.78039, 255*0.2353)
label = f'L - {Conf[0]:.3f}' if Side==0 else f'R - {Conf[0]:.3f}'
cv2.rectangle(img_vis, (int(Bbox[0]), int(Bbox[1])), (int(Bbox[2]), int(Bbox[3])), color , 3)
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)
cv2.rectangle(img_vis, (int(Bbox[0]), int(Bbox[1]) - 20), (int(Bbox[0]) + w, int(Bbox[1])), color, -1)
cv2.putText(img_vis, label, (int(Bbox[0]), int(Bbox[1]) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 2)
if len(bboxes) != 0:
boxes = np.stack(bboxes)
right = np.stack(is_right)
dataset = ViTDetDataset(model_cfg, img_cv2, boxes, right, rescale_factor=2.0 )
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
all_right = []
all_joints= []
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = model(batch)
print('CUDA AVAILABLE', torch.cuda.is_available())
print(out['pred_vertices'])
multiplier = (2*batch['right']-1)
pred_cam = out['pred_cam']
pred_cam[:,1] = multiplier*pred_cam[:,1]
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
batch_size = batch['img'].shape[0]
for n in range(batch_size):
verts = out['pred_vertices'][n].detach().cpu().numpy()
joints = out['pred_keypoints_3d'][n].detach().cpu().numpy()
is_right = batch['right'][n].cpu().numpy()
verts[:,0] = (2*is_right-1)*verts[:,0]
joints[:,0] = (2*is_right-1)*joints[:,0]
cam_t = pred_cam_t_full[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
all_right.append(is_right)
all_joints.append(joints)
reconstructions = {'verts': all_verts, 'cam_t': all_cam_t, 'right': all_right, 'img_size': img_size[n], 'focal': scaled_focal_length}
return img_vis.astype(np.float32)/255.0, len(detections), reconstructions
else:
return img_vis.astype(np.float32)/255.0, len(detections), None
header = ('''
<div class="embed_hidden" style="text-align: center;">
<h1> <b>WiLoR</b>: End-to-end 3D hand localization and reconstruction in-the-wild</h1>
<h3>
<a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>1</sup>,
<a href="" target="_blank" rel="noopener noreferrer">Jinglei Zhang</a><sup>2</sup>,
<br>
<a href="https://jiankangdeng.github.io/" target="_blank" rel="noopener noreferrer">Jiankang Deng</a><sup>1</sup>,
<a href="https://wp.doc.ic.ac.uk/szafeiri/" target="_blank" rel="noopener noreferrer">Stefanos Zafeiriou</a><sup>1</sup>
</h3>
<h3>
<sup>1</sup>Imperial College London;
<sup>2</sup>Shanghai Jiao Tong University
</h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/2409.12259'><img src='https://img.shields.io/badge/Arxiv-2409.12259-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
<a href='https://rolpotamias.github.io/pdfs/WiLoR.pdf'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a>
<a href='https://rolpotamias.github.io/WiLoR/'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
<a href='https://github.com/rolpotamias/WiLoR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a>
<a href='https://colab.research.google.com/drive/1bNnYFECmJbbvCNZAKtQcxJGxf0DZppsB?usp=sharing'><img src='https://colab.research.google.com/assets/colab-badge.svg'></a>
''')
with gr.Blocks(title="WiLoR: End-to-end 3D hand localization and reconstruction in-the-wild", css=".gradio-container") as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="numpy")
threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold')
#nms = gr.Slider(value=0.5, minimum=0.05, maximum=0.95, step=0.05, label='IoU NMS Threshold')
submit = gr.Button("Submit", variant="primary")
with gr.Column():
reconstruction = gr.Image(label="Reconstructions", type="numpy")
hands_detected = gr.Textbox(label="Hands Detected")
submit.click(fn=render_reconstruction, inputs=[input_image, threshold], outputs=[reconstruction, hands_detected])
with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/test6.jpg'],
['/home/user/app/assets/test7.jpg'],
['/home/user/app/assets/test8.jpg'],
['/home/user/app/assets/test1.jpg'],
['/home/user/app/assets/test2.png'],
['/home/user/app/assets/test3.jpg'],
['/home/user/app/assets/test4.jpg'],
['/home/user/app/assets/test5.jpeg']
],
inputs=input_image)
demo.launch(debug=True) |