fastSAM / app.py
robot2no1's picture
Update app.py
676e2ff verified
import gradio as gr
import cv2
import numpy as np
from sam_segment import segment_image_with_prompt
# 预定义分割颜色组
SEGMENT_COLORS = [
((255, 99, 71), (255, 99, 71)), # 红橙色
((65, 105, 225), (65, 105, 225)), # 皇家蓝
((50, 205, 50), (50, 205, 50)), # 酸橙绿
((255, 215, 0), (255, 215, 0)), # 金色
((238, 130, 238), (238, 130, 238)), # 紫罗兰
((0, 191, 255), (0, 191, 255)), # 深天蓝
((255, 165, 0), (255, 165, 0)), # 橙色
((106, 90, 205), (106, 90, 205)), # 石板蓝
]
def segment_image(input_image, model_size, conf_threshold, iou_threshold):
"""
使用FastSAM模型对输入图片进行分割
"""
try:
# 进行预测
results = segment_image_with_prompt(
image=input_image,
model_size=model_size,
conf=conf_threshold,
iou=iou_threshold,
)
# 创建输出图像的副本
output_image = input_image.copy()
# 获取图像尺寸
h, w = output_image.shape[:2]
# 创建一个总的遮罩层和一个累积掩码
final_mask = np.zeros_like(output_image)
accumulated_mask = np.zeros((h, w), dtype=np.uint8)
# 为每个分割结果创建掩码
for idx, points in enumerate(results["segments"]):
# 将点列表转换为轮廓格式
contour_points = np.array(points).reshape(-1, 2).astype(np.int32)
# 创建空白掩码
mask = np.zeros((h, w), dtype=np.uint8)
# 填充轮廓
cv2.fillPoly(mask, [contour_points], 1)
# 更新累积掩码(避免重叠区域重复计算)
mask = cv2.bitwise_and(mask, cv2.bitwise_not(accumulated_mask))
accumulated_mask = cv2.bitwise_or(accumulated_mask, mask)
# 使用预定义的颜色(循环使用)
color_idx = idx % len(SEGMENT_COLORS)
fill_color, stroke_color = SEGMENT_COLORS[color_idx]
# 创建填充区域(半透明)
fill_mask = np.zeros_like(output_image)
fill_mask[mask > 0] = fill_color
final_mask = cv2.addWeighted(final_mask, 1.0, fill_mask, 0.3, 0)
# 绘制轮廓线
cv2.drawContours(final_mask, [contour_points], -1, stroke_color, 2)
# 混合原图和掩码
output_image = cv2.addWeighted(output_image, 1.0, final_mask, 0.5, 0)
return output_image
except Exception as e:
print(f"分割过程中出错: {str(e)}")
return input_image
# 创建Gradio界面
demo = gr.Interface(
fn=segment_image,
inputs=[
gr.Image(label="输入图片"),
gr.Radio(
choices=["small", "large"],
value="large",
label="模型大小",
info="small: 更快但精度较低, large: 更慢但精度更高"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.4,
step=0.1,
label="置信度阈值",
info="值越高,检测越严格"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3, # 降低默认值,使其能显示更多区域
step=0.1,
label="IoU阈值",
info="值越低则保留更多重叠区域,值越高则保留更少重叠区域"
)
],
outputs=gr.Image(label="分割结果"),
title="FastSAM图像分割演示",
description="上传一张图片,调整参数,模型将对图片中的对象进行分割。",
examples=[
[
"./images/test_1.png", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
],
[
"./images/test_2.jpg", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
],
[
"./images/test_3.jpg", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
],
[
"./images/test_4.jpg", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
],
[
"./images/test_5.jpg", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
],
[
"./images/test_6.jpg", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
],
[
"./images/test_7.jpg", # 图片路径
"large", # 模型大小
0.3, # 置信度阈值
0.3 # IoU阈值,降低默认值
]
]
)
# 启动应用
if __name__ == "__main__":
demo.launch(share=True)