|
|
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor |
|
from PIL import ImageDraw |
|
from utils.tools_gradio import fast_process |
|
import copy |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser( |
|
description="Host EdgeSAM as a local web service." |
|
) |
|
parser.add_argument( |
|
"--checkpoint", |
|
default="weights/edge_sam_3x.pth", |
|
type=str, |
|
help="The path to the EdgeSAM model checkpoint." |
|
) |
|
parser.add_argument( |
|
"--enable-everything-mode", |
|
action="store_true", |
|
help="Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the " |
|
"decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected.", |
|
) |
|
parser.add_argument( |
|
"--server-name", |
|
default="0.0.0.0", |
|
type=str, |
|
help="The server address that this demo will be hosted on." |
|
) |
|
parser.add_argument( |
|
"--port", |
|
default=8080, |
|
type=int, |
|
help="The port that this demo will be hosted on." |
|
) |
|
args = parser.parse_args() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic") |
|
sam = sam.to(device=device) |
|
sam.eval() |
|
|
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
predictor = SamPredictor(sam) |
|
|
|
|
|
title = "<center><strong><font size='8'>EdgeSAM<font></strong></center>" |
|
|
|
description_p = """ # Instructions for point mode |
|
|
|
1. Upload an image or click one of the provided examples. |
|
2. Select the point type. |
|
3. Click once or multiple times on the image to indicate the object of interest. |
|
4. Click Start to get the segmentation mask. |
|
5. The clear button clears all the points. |
|
6. The reset button resets both points and the image. |
|
|
|
""" |
|
|
|
description_b = """ # Instructions for box mode |
|
|
|
1. Upload an image or click one of the provided examples. |
|
2. Click twice on the image (diagonal points of the box). |
|
3. Click Start to get the segmentation mask. |
|
4. The clear button clears the box. |
|
5. The reset button resets both the box and the image. |
|
|
|
""" |
|
|
|
description_e = """ # Everything mode is NOT recommended. |
|
|
|
Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected. |
|
|
|
""" |
|
|
|
examples = [ |
|
["web_demo/assets/picture1.jpg"], |
|
["web_demo/assets/picture2.jpg"], |
|
["web_demo/assets/picture3.jpg"], |
|
["web_demo/assets/picture4.jpg"], |
|
] |
|
|
|
default_example = examples[0] |
|
|
|
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" |
|
|
|
global_points = [] |
|
global_point_label = [] |
|
global_box = [] |
|
global_image = None |
|
|
|
|
|
def reset(): |
|
global global_points |
|
global global_point_label |
|
global global_box |
|
global global_image |
|
global_points = [] |
|
global_point_label = [] |
|
global_box = [] |
|
global_image = None |
|
return None, None |
|
|
|
|
|
def reset_all(): |
|
global global_points |
|
global global_point_label |
|
global global_box |
|
global global_image |
|
global_points = [] |
|
global_point_label = [] |
|
global_box = [] |
|
global_image = None |
|
if args.enable_everything_mode: |
|
return None, None, None, None, None, None |
|
else: |
|
return None, None, None, None |
|
|
|
|
|
def clear(): |
|
global global_points |
|
global global_point_label |
|
global global_box |
|
global global_image |
|
global_points = [] |
|
global_point_label = [] |
|
global_box = [] |
|
return global_image, None |
|
|
|
|
|
def on_image_upload(image, input_size=1024): |
|
global global_points |
|
global global_point_label |
|
global global_box |
|
global global_image |
|
global_points = [] |
|
global_point_label = [] |
|
global_box = [] |
|
|
|
input_size = int(input_size) |
|
w, h = image.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
image = image.resize((new_w, new_h)) |
|
global_image = copy.deepcopy(image) |
|
print("Image changed") |
|
nd_image = np.array(global_image) |
|
predictor.set_image(nd_image) |
|
|
|
return image, None |
|
|
|
|
|
def convert_box(xyxy): |
|
min_x = min(xyxy[0][0], xyxy[1][0]) |
|
max_x = max(xyxy[0][0], xyxy[1][0]) |
|
min_y = min(xyxy[0][1], xyxy[1][1]) |
|
max_y = max(xyxy[0][1], xyxy[1][1]) |
|
xyxy[0][0] = min_x |
|
xyxy[1][0] = max_x |
|
xyxy[0][1] = min_y |
|
xyxy[1][1] = max_y |
|
return xyxy |
|
|
|
|
|
def get_points_with_draw(image, label, evt: gr.SelectData): |
|
global global_points |
|
global global_point_label |
|
|
|
|
|
x, y = evt.index[0], evt.index[1] |
|
|
|
|
|
point_radius, point_color = 10, (97, 217, 54) if label == "Positive" else (237, 34, 13) |
|
global_points.append([x, y]) |
|
global_point_label.append(1 if label == "Positive" else 0) |
|
|
|
print(f'global_points: {global_points}') |
|
print(f'global_point_label: {global_point_label}') |
|
|
|
draw = ImageDraw.Draw(image) |
|
draw.ellipse( |
|
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], |
|
fill=point_color, |
|
) |
|
return image |
|
|
|
|
|
def get_box_with_draw(image, evt: gr.SelectData): |
|
global global_box |
|
|
|
|
|
x, y = evt.index[0], evt.index[1] |
|
|
|
|
|
point_radius, point_color, box_outline = 5, (97, 217, 54), 5 |
|
box_color = (0, 255, 0) |
|
|
|
if len(global_box) == 0: |
|
global_box.append([x, y]) |
|
elif len(global_box) == 1: |
|
global_box.append([x, y]) |
|
elif len(global_box) == 2: |
|
global_box = [[x, y]] |
|
|
|
print(f'global_box: {global_box}') |
|
|
|
draw = ImageDraw.Draw(image) |
|
draw.ellipse( |
|
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], |
|
fill=point_color, |
|
) |
|
|
|
if len(global_box) == 2: |
|
global_box = convert_box(global_box) |
|
xy = (global_box[0][0], global_box[0][1], global_box[1][0], global_box[1][1]) |
|
draw.rectangle( |
|
xy, |
|
outline=box_color, |
|
width=box_outline |
|
) |
|
|
|
return image |
|
|
|
|
|
def segment_with_points( |
|
image, |
|
input_size=1024, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=False, |
|
): |
|
global global_points |
|
global global_point_label |
|
|
|
global_points_np = np.array(global_points) |
|
global_point_label_np = np.array(global_point_label) |
|
|
|
if global_points_np.size == 0 and global_point_label_np.size == 0: |
|
print("No point selected") |
|
return image, image |
|
|
|
num_multimask_outputs = 4 |
|
|
|
masks, scores, logits = predictor.predict( |
|
point_coords=global_points_np, |
|
point_labels=global_point_label_np, |
|
num_multimask_outputs=num_multimask_outputs, |
|
use_stability_score=True |
|
) |
|
|
|
print(f'scores: {scores}') |
|
area = masks.sum(axis=(1, 2)) |
|
print(f'area: {area}') |
|
|
|
if num_multimask_outputs == 1: |
|
annotations = masks |
|
else: |
|
annotations = np.expand_dims(masks[scores.argmax()], axis=0) |
|
|
|
seg = fast_process( |
|
annotations=annotations, |
|
image=image, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, |
|
) |
|
|
|
return image, seg |
|
|
|
|
|
def segment_with_box( |
|
image, |
|
input_size=1024, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=False, |
|
): |
|
global global_box |
|
global_box_np = np.array(global_box) |
|
|
|
if global_box_np.size < 4: |
|
print("No box selected") |
|
return image, image |
|
|
|
masks, scores, logits = predictor.predict( |
|
box=global_box_np, |
|
num_multimask_outputs=1, |
|
) |
|
annotations = masks |
|
|
|
seg = fast_process( |
|
annotations=annotations, |
|
image=image, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, |
|
) |
|
|
|
return image, seg |
|
|
|
|
|
def segment_everything( |
|
image, |
|
input_size=1024, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=True, |
|
): |
|
nd_image = np.array(image) |
|
masks = mask_generator.generate(nd_image) |
|
annotations = masks |
|
seg = fast_process( |
|
annotations=annotations, |
|
image=image, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, |
|
) |
|
|
|
return seg |
|
|
|
|
|
cond_img_p = gr.Image(label="Input with points", type="pil") |
|
cond_img_b = gr.Image(label="Input with box", type="pil") |
|
cond_img_e = gr.Image(label="Input (everything)", type="pil") |
|
|
|
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil") |
|
segm_img_b = gr.Image(label="Segmented Image with box", interactive=False, type="pil") |
|
segm_img_e = gr.Image(label="Segmented Everything", interactive=False, type="pil") |
|
|
|
if args.enable_everything_mode: |
|
all_outputs = [cond_img_p, cond_img_b, cond_img_e, segm_img_p, segm_img_b, segm_img_e] |
|
else: |
|
all_outputs = [cond_img_p, cond_img_b, segm_img_p, segm_img_b] |
|
|
|
with gr.Blocks(css=css, title="EdgeSAM") as demo: |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
gr.Markdown(title) |
|
|
|
with gr.Tab("Point mode") as tab_p: |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_p.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_p.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
add_or_remove = gr.Radio( |
|
["Positive", "Negative"], |
|
value="Positive", |
|
label="Point Type" |
|
) |
|
|
|
with gr.Column(): |
|
segment_btn_p = gr.Button( |
|
"Start", variant="primary" |
|
) |
|
clear_btn_p = gr.Button("Clear", variant="secondary") |
|
reset_btn_p = gr.Button("Reset", variant="secondary") |
|
|
|
gr.Markdown("Try some of the examples below ⬇️") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[cond_img_p], |
|
outputs=[cond_img_p, segm_img_p], |
|
examples_per_page=4, |
|
fn=on_image_upload, |
|
run_on_click=True |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(description_p) |
|
|
|
with gr.Tab("Box mode") as tab_b: |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_b.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_b.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
segment_btn_b = gr.Button( |
|
"Start", variant="primary" |
|
) |
|
clear_btn_b = gr.Button("Clear", variant="secondary") |
|
reset_btn_b = gr.Button("Reset", variant="secondary") |
|
|
|
gr.Markdown("Try some of the examples below ⬇️") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[cond_img_b], |
|
outputs=[cond_img_b, segm_img_b], |
|
examples_per_page=4, |
|
fn=on_image_upload, |
|
run_on_click=True |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(description_b) |
|
|
|
if args.enable_everything_mode: |
|
with gr.Tab("Everything mode") as tab_e: |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_e.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_e.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
segment_btn_e = gr.Button( |
|
"Start", variant="primary" |
|
) |
|
reset_btn_e = gr.Button("Reset", variant="secondary") |
|
|
|
gr.Markdown("Try some of the examples below ⬇️") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[cond_img_e], |
|
examples_per_page=4, |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(description_e) |
|
|
|
cond_img_p.upload(on_image_upload, cond_img_p, [cond_img_p, segm_img_p]) |
|
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) |
|
segment_btn_p.click( |
|
segment_with_points, inputs=[cond_img_p], outputs=[cond_img_p, segm_img_p] |
|
) |
|
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) |
|
reset_btn_p.click(reset, outputs=[cond_img_p, segm_img_p]) |
|
tab_p.select(fn=reset_all, outputs=all_outputs) |
|
|
|
cond_img_b.select(get_box_with_draw, [cond_img_b], cond_img_b) |
|
segment_btn_b.click( |
|
segment_with_box, inputs=[cond_img_b], outputs=[cond_img_b, segm_img_b] |
|
) |
|
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b]) |
|
reset_btn_b.click(reset, outputs=[cond_img_b, segm_img_b]) |
|
tab_b.select(fn=reset_all, outputs=all_outputs) |
|
|
|
if args.enable_everything_mode: |
|
segment_btn_e.click( |
|
segment_everything, inputs=[cond_img_e], outputs=segm_img_e |
|
) |
|
reset_btn_e.click(reset, outputs=[cond_img_e, segm_img_e]) |
|
tab_e.select(fn=reset_all, outputs=all_outputs) |
|
|
|
demo.queue() |
|
|
|
demo.launch() |