Spaces:
Running
on
Zero
Running
on
Zero
import pdb | |
import sys | |
[sys.path.append(i) for i in ['.', '..']] | |
sys.path.append("./models/qp_vqvae") | |
sys.path.append("./models/qp_vqvae/utils") | |
import numpy as np | |
import torch as t | |
import torch.nn as nn | |
from .qp_vqvae.encdec import Encoder, Decoder, assert_shape | |
from .qp_vqvae.bottleneck import NoBottleneck, Bottleneck | |
from .qp_vqvae.utils.logger import average_metrics | |
from .qp_vqvae.utils.torch_utils import parse_args | |
import torch.nn.functional as F | |
args = parse_args() | |
mydevice = t.device('cuda:' + args.gpu) | |
def dont_update(params): | |
for param in params: | |
param.requires_grad = False | |
def update(params): | |
for param in params: | |
param.requires_grad = True | |
def calculate_strides(strides, downs): | |
return [stride ** down for stride, down in zip(strides, downs)] | |
# def _loss_fn(loss_fn, x_target, x_pred, hps): | |
# if loss_fn == 'l1': | |
# return t.mean(t.abs(x_pred - x_target)) / hps.bandwidth['l1'] | |
# elif loss_fn == 'l2': | |
# return t.mean((x_pred - x_target) ** 2) / hps.bandwidth['l2'] | |
# elif loss_fn == 'linf': | |
# residual = ((x_pred - x_target) ** 2).reshape(x_target.shape[0], -1) | |
# values, _ = t.topk(residual, hps.linf_k, dim=1) | |
# return t.mean(values) / hps.bandwidth['l2'] | |
# elif loss_fn == 'lmix': | |
# loss = 0.0 | |
# if hps.lmix_l1: | |
# loss += hps.lmix_l1 * _loss_fn('l1', x_target, x_pred, hps) | |
# if hps.lmix_l2: | |
# loss += hps.lmix_l2 * _loss_fn('l2', x_target, x_pred, hps) | |
# if hps.lmix_linf: | |
# loss += hps.lmix_linf * _loss_fn('linf', x_target, x_pred, hps) | |
# return loss | |
# else: | |
# assert False, f"Unknown loss_fn {loss_fn}" | |
def _loss_fn(x_target, x_pred): | |
smooth_l1_loss = nn.SmoothL1Loss(reduction='none') | |
return smooth_l1_loss(x_pred,x_target).mean() | |
#return t.mean(t.abs(x_pred - x_target)) | |
class VQVAE(nn.Module): | |
def __init__(self, hps, input_dim=72): | |
super().__init__() | |
self.hps = hps | |
input_dim=hps.pose_dims | |
input_shape = (hps.sample_length, input_dim) | |
levels = hps.levels | |
downs_t = hps.downs_t | |
strides_t = hps.strides_t | |
emb_width = hps.emb_width | |
l_bins = hps.l_bins | |
mu = hps.l_mu | |
commit = hps.commit | |
#root_weight = hps.root_weight | |
# spectral = hps.spectral | |
# multispectral = hps.multispectral | |
multipliers = hps.hvqvae_multipliers | |
use_bottleneck = hps.use_bottleneck | |
if use_bottleneck: | |
print('We use bottleneck!') | |
else: | |
print('We do not use bottleneck!') | |
if not hasattr(hps, 'dilation_cycle'): | |
hps.dilation_cycle = None | |
block_kwargs = dict(width=hps.width, depth=hps.depth, m_conv=hps.m_conv, \ | |
dilation_growth_rate=hps.dilation_growth_rate, \ | |
dilation_cycle=hps.dilation_cycle, \ | |
reverse_decoder_dilation=hps.vqvae_reverse_decoder_dilation) | |
self.sample_length = input_shape[0] | |
x_shape, x_channels = input_shape[:-1], input_shape[-1] | |
self.x_shape = x_shape | |
self.downsamples = calculate_strides(strides_t, downs_t) | |
self.hop_lengths = np.cumprod(self.downsamples) | |
self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)] | |
self.levels = levels | |
if multipliers is None: | |
self.multipliers = [1] * levels | |
else: | |
assert len(multipliers) == levels, "Invalid number of multipliers" | |
self.multipliers = multipliers | |
def _block_kwargs(level): | |
this_block_kwargs = dict(block_kwargs) | |
this_block_kwargs["width"] *= self.multipliers[level] | |
this_block_kwargs["depth"] *= self.multipliers[level] | |
return this_block_kwargs | |
encoder = lambda level: Encoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) # different from supplemental | |
decoder = lambda level: Decoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
for level in range(levels): | |
self.encoders.append(encoder(level)) | |
self.decoders.append(decoder(level)) | |
if use_bottleneck: | |
self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels) # 512, 512, 0.99, 1 | |
else: | |
self.bottleneck = NoBottleneck(levels) | |
self.downs_t = downs_t | |
self.strides_t = strides_t | |
self.l_bins = l_bins | |
self.commit = commit | |
#self.root_weight = root_weight | |
self.reg = hps.reg if hasattr(hps, 'reg') else 0 | |
self.acc = hps.acc if hasattr(hps, 'acc') else 0 | |
self.vel = hps.vel if hasattr(hps, 'vel') else 0 | |
if self.reg == 0: | |
print('No motion regularization!') | |
# self.spectral = spectral | |
# self.multispectral = multispectral | |
def preprocess(self, x): | |
# x: NTC [-1,1] -> NCT [-1,1] | |
assert len(x.shape) == 3 | |
x = x.permute(0,2,1).float() | |
return x | |
def postprocess(self, x): | |
# x: NTC [-1,1] <- NCT [-1,1] | |
x = x.permute(0,2,1) | |
return x | |
def _decode(self, zs, start_level=0, end_level=None): | |
# Decode | |
if end_level is None: | |
end_level = self.levels | |
assert len(zs) == end_level - start_level | |
xs_quantised = self.bottleneck.decode(zs, start_level=start_level, end_level=end_level) | |
assert len(xs_quantised) == end_level - start_level | |
# Use only lowest level | |
decoder, x_quantised = self.decoders[start_level], xs_quantised[0:1] | |
x_out = decoder(x_quantised, all_levels=False) | |
x_out = self.postprocess(x_out) | |
return x_out | |
def decode(self, zs, start_level=0, end_level=None, bs_chunks=1): | |
z_chunks = [t.chunk(z, bs_chunks, dim=0) for z in zs] | |
x_outs = [] | |
for i in range(bs_chunks): | |
zs_i = [z_chunk[i] for z_chunk in z_chunks] | |
x_out = self._decode(zs_i, start_level=start_level, end_level=end_level) | |
x_outs.append(x_out) | |
return t.cat(x_outs, dim=0) | |
def _encode(self, x, start_level=0, end_level=None): | |
# Encode | |
if end_level is None: | |
end_level = self.levels | |
x_in = self.preprocess(x) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
zs = self.bottleneck.encode(xs) | |
return zs[start_level:end_level] | |
def encode(self, x, start_level=0, end_level=None, bs_chunks=1): | |
x_chunks = t.chunk(x, bs_chunks, dim=0) | |
zs_list = [] | |
for x_i in x_chunks: | |
zs_i = self._encode(x_i, start_level=start_level, end_level=end_level) | |
zs_list.append(zs_i) | |
zs = [t.cat(zs_level_list, dim=0) for zs_level_list in zip(*zs_list)] | |
return zs | |
def sample(self, n_samples): | |
zs = [t.randint(0, self.l_bins, size=(n_samples, *z_shape), device=mydevice) for z_shape in self.z_shapes] | |
return self.decode(zs) | |
def forward(self, x): # ([256, 80, 282]) | |
metrics = {} | |
N = x.shape[0] | |
# Encode/Decode | |
x_in = self.preprocess(x) # ([256, 282, 80]) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
# xs[0]: (32, 512, 30) | |
zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs) #xs[0].shape=([256, 512, 5]) | |
''' | |
zs[0]: (32, 30) | |
xs_quantised[0]: (32, 512, 30) | |
commit_losses[0]: 0.0009 | |
quantiser_metrics[0]: | |
fit 0.4646 | |
pn 0.0791 | |
entropy 5.9596 | |
used_curr 512 | |
usage 512 | |
dk 0.0006 | |
''' | |
x_outs = [] | |
for level in range(self.levels): | |
decoder = self.decoders[level] | |
x_out = decoder(xs_quantised[level:level+1], all_levels=False) | |
assert_shape(x_out, x_in.shape) | |
x_outs.append(x_out) | |
# x_outs[0]: (32, 45, 240) | |
# Loss | |
# def _spectral_loss(x_target, x_out, self.hps): | |
# if hps.use_nonrelative_specloss: | |
# sl = spectral_loss(x_target, x_out, self.hps) / hps.bandwidth['spec'] | |
# else: | |
# sl = spectral_convergence(x_target, x_out, self.hps) | |
# sl = t.mean(sl) | |
# return sl | |
# def _multispectral_loss(x_target, x_out, self.hps): | |
# sl = multispectral_loss(x_target, x_out, self.hps) / hps.bandwidth['spec'] | |
# sl = t.mean(sl) | |
# return sl | |
recons_loss = t.zeros(()).cuda() | |
regularization = t.zeros(()).cuda() | |
velocity_loss = t.zeros(()).cuda() | |
acceleration_loss = t.zeros(()).cuda() | |
# spec_loss = t.zeros(()).to(x.device) | |
# multispec_loss = t.zeros(()).to(x.device) | |
# x_target = audio_postprocess(x.float(), self.hps) | |
x_target = x.float() | |
for level in reversed(range(self.levels)): | |
x_out = self.postprocess(x_outs[level]) # (32, 240, 45) | |
# x_out = audio_postprocess(x_out, self.hps) | |
# scale_factor = t.ones(self.hps.pose_dims).to(x_target.device) | |
# scale_factor[:3]=self.root_weight | |
# x_target = x_target * scale_factor | |
# x_out = x_out * scale_factor | |
# this_recons_loss = _loss_fn(loss_fn, x_target, x_out, hps) | |
this_recons_loss = _loss_fn(x_target, x_out) | |
# this_spec_loss = _spectral_loss(x_target, x_out, hps) | |
# this_multispec_loss = _multispectral_loss(x_target, x_out, hps) | |
metrics[f'recons_loss_l{level + 1}'] = this_recons_loss | |
# metrics[f'spectral_loss_l{level + 1}'] = this_spec_loss | |
# metrics[f'multispectral_loss_l{level + 1}'] = this_multispec_loss | |
recons_loss += this_recons_loss | |
# spec_loss += this_spec_loss | |
# multispec_loss += this_multispec_loss | |
regularization += t.mean((x_out[:, 2:] + x_out[:, :-2] - 2 * x_out[:, 1:-1])**2) | |
velocity_loss += _loss_fn( x_out[:, 1:] - x_out[:, :-1], x_target[:, 1:] - x_target[:, :-1]) | |
acceleration_loss += _loss_fn(x_out[:, 2:] + x_out[:, :-2] - 2 * x_out[:, 1:-1], x_target[:, 2:] + x_target[:, :-2] - 2 * x_target[:, 1:-1]) | |
# if not hasattr(self.) | |
commit_loss = sum(commit_losses) | |
# loss = recons_loss + self.spectral * spec_loss + self.multispectral * multispec_loss + self.commit * commit_loss | |
# pdb.set_trace() | |
loss = recons_loss + commit_loss * self.commit + self.reg * regularization + self.vel * velocity_loss + self.acc * acceleration_loss | |
''' x:-0.8474 ~ 1.1465 | |
0.2080 | |
5.5e-5 * 0.02 | |
0.0011 | |
0.0163 * 1 | |
0.0274 * 1 | |
''' | |
encodings = F.one_hot(zs[0].reshape(-1), self.hps.l_bins).float() | |
avg_probs = t.mean(encodings, dim=0) | |
perplexity = t.exp(-t.sum(avg_probs * t.log(avg_probs + 1e-10))) | |
with t.no_grad(): | |
# sc = t.mean(spectral_convergence(x_target, x_out, hps)) | |
# l2_loss = _loss_fn("l2", x_target, x_out, hps) | |
l1_loss = _loss_fn(x_target, x_out) | |
# linf_loss = _loss_fn("linf", x_target, x_out, hps) | |
quantiser_metrics = average_metrics(quantiser_metrics) | |
metrics.update(dict( | |
loss = loss, | |
recons_loss=recons_loss, | |
# spectral_loss=spec_loss, | |
# multispectral_loss=multispec_loss, | |
# spectral_convergence=sc, | |
# l2_loss=l2_loss, | |
l1_loss=l1_loss, | |
# linf_loss=linf_loss, | |
commit_loss=commit_loss, | |
regularization=regularization, | |
velocity_loss=velocity_loss, | |
acceleration_loss=acceleration_loss, | |
perplexity=perplexity, | |
**quantiser_metrics)) | |
for key, val in metrics.items(): | |
metrics[key] = val.detach() | |
return { | |
# "poses_feat":vq_latent, | |
# "embedding_loss":embedding_loss, | |
# "perplexity":perplexity, | |
"rec_pose": x_out, | |
"loss": loss, | |
"metrics": metrics, | |
"embedding_loss": commit_loss * self.commit, | |
} | |
class VQVAE_Encoder(nn.Module): | |
def __init__(self, hps, input_dim=72): | |
super().__init__() | |
self.hps = hps | |
input_dim=hps.pose_dims | |
input_shape = (hps.sample_length, input_dim) | |
levels = hps.levels | |
downs_t = hps.downs_t | |
strides_t = hps.strides_t | |
emb_width = hps.emb_width | |
l_bins = hps.l_bins | |
mu = hps.l_mu | |
commit = hps.commit | |
# spectral = hps.spectral | |
# multispectral = hps.multispectral | |
multipliers = hps.hvqvae_multipliers | |
use_bottleneck = hps.use_bottleneck | |
if use_bottleneck: | |
print('We use bottleneck!') | |
else: | |
print('We do not use bottleneck!') | |
if not hasattr(hps, 'dilation_cycle'): | |
hps.dilation_cycle = None | |
block_kwargs = dict(width=hps.width, depth=hps.depth, m_conv=hps.m_conv, \ | |
dilation_growth_rate=hps.dilation_growth_rate, \ | |
dilation_cycle=hps.dilation_cycle, \ | |
reverse_decoder_dilation=hps.vqvae_reverse_decoder_dilation) | |
self.sample_length = input_shape[0] | |
x_shape, x_channels = input_shape[:-1], input_shape[-1] | |
self.x_shape = x_shape | |
self.downsamples = calculate_strides(strides_t, downs_t) | |
self.hop_lengths = np.cumprod(self.downsamples) | |
self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)] | |
self.levels = levels | |
if multipliers is None: | |
self.multipliers = [1] * levels | |
else: | |
assert len(multipliers) == levels, "Invalid number of multipliers" | |
self.multipliers = multipliers | |
def _block_kwargs(level): | |
this_block_kwargs = dict(block_kwargs) | |
this_block_kwargs["width"] *= self.multipliers[level] | |
this_block_kwargs["depth"] *= self.multipliers[level] | |
return this_block_kwargs | |
encoder = lambda level: Encoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) # different from supplemental | |
decoder = lambda level: Decoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
for level in range(levels): | |
self.encoders.append(encoder(level)) | |
self.decoders.append(decoder(level)) | |
if use_bottleneck: | |
self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels) # 512, 512, 0.99, 1 | |
else: | |
self.bottleneck = NoBottleneck(levels) | |
self.downs_t = downs_t | |
self.strides_t = strides_t | |
self.l_bins = l_bins | |
self.commit = commit | |
self.reg = hps.reg if hasattr(hps, 'reg') else 0 | |
self.acc = hps.acc if hasattr(hps, 'acc') else 0 | |
self.vel = hps.vel if hasattr(hps, 'vel') else 0 | |
if self.reg == 0: | |
print('No motion regularization!') | |
# self.spectral = spectral | |
# self.multispectral = multispectral | |
def preprocess(self, x): | |
# x: NTC [-1,1] -> NCT [-1,1] | |
assert len(x.shape) == 3 | |
x = x.permute(0,2,1).float() | |
return x | |
def postprocess(self, x): | |
# x: NTC [-1,1] <- NCT [-1,1] | |
x = x.permute(0,2,1) | |
return x | |
def sample(self, n_samples): | |
zs = [t.randint(0, self.l_bins, size=(n_samples, *z_shape), device=mydevice) for z_shape in self.z_shapes] | |
return self.decode(zs) | |
def forward(self, x): # ([256, 80, 282]) | |
metrics = {} | |
N = x.shape[0] | |
# Encode/Decode | |
x_in = self.preprocess(x) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
# xs[0]: (32, 512, 30) | |
zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs) #xs[0].shape=([256, 512, 5]) | |
return zs[0],xs[0] , xs_quantised[0] | |
class VQVAE_Decoder(nn.Module): | |
def __init__(self, hps, input_dim=72): | |
super().__init__() | |
self.hps = hps | |
input_dim=hps.pose_dims | |
input_shape = (hps.sample_length, input_dim) | |
levels = hps.levels | |
downs_t = hps.downs_t | |
strides_t = hps.strides_t | |
emb_width = hps.emb_width | |
l_bins = hps.l_bins | |
mu = hps.l_mu | |
commit = hps.commit | |
# spectral = hps.spectral | |
# multispectral = hps.multispectral | |
multipliers = hps.hvqvae_multipliers | |
use_bottleneck = hps.use_bottleneck | |
if use_bottleneck: | |
print('We use bottleneck!') | |
else: | |
print('We do not use bottleneck!') | |
if not hasattr(hps, 'dilation_cycle'): | |
hps.dilation_cycle = None | |
block_kwargs = dict(width=hps.width, depth=hps.depth, m_conv=hps.m_conv, \ | |
dilation_growth_rate=hps.dilation_growth_rate, \ | |
dilation_cycle=hps.dilation_cycle, \ | |
reverse_decoder_dilation=hps.vqvae_reverse_decoder_dilation) | |
self.sample_length = input_shape[0] | |
x_shape, x_channels = input_shape[:-1], input_shape[-1] | |
self.x_shape = x_shape | |
self.downsamples = calculate_strides(strides_t, downs_t) | |
self.hop_lengths = np.cumprod(self.downsamples) | |
self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)] | |
self.levels = levels | |
if multipliers is None: | |
self.multipliers = [1] * levels | |
else: | |
assert len(multipliers) == levels, "Invalid number of multipliers" | |
self.multipliers = multipliers | |
def _block_kwargs(level): | |
this_block_kwargs = dict(block_kwargs) | |
this_block_kwargs["width"] *= self.multipliers[level] | |
this_block_kwargs["depth"] *= self.multipliers[level] | |
return this_block_kwargs | |
encoder = lambda level: Encoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) # different from supplemental | |
decoder = lambda level: Decoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
for level in range(levels): | |
self.encoders.append(encoder(level)) | |
self.decoders.append(decoder(level)) | |
if use_bottleneck: | |
self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels) # 512, 512, 0.99, 1 | |
else: | |
self.bottleneck = NoBottleneck(levels) | |
self.downs_t = downs_t | |
self.strides_t = strides_t | |
self.l_bins = l_bins | |
self.commit = commit | |
self.reg = hps.reg if hasattr(hps, 'reg') else 0 | |
self.acc = hps.acc if hasattr(hps, 'acc') else 0 | |
self.vel = hps.vel if hasattr(hps, 'vel') else 0 | |
if self.reg == 0: | |
print('No motion regularization!') | |
# self.spectral = spectral | |
# self.multispectral = multispectral | |
def preprocess(self, x): | |
# x: NTC [-1,1] -> NCT [-1,1] | |
assert len(x.shape) == 3 | |
x = x.permute(0,2,1).float() | |
return x | |
def postprocess(self, x): | |
# x: NTC [-1,1] <- NCT [-1,1] | |
x = x.permute(0,2,1) | |
return x | |
def forward(self, xs): # ([256, 80, 282]) | |
xs=[xs] | |
zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs) | |
x_outs = [] | |
for level in range(self.levels): | |
decoder = self.decoders[level] | |
x_out = decoder(xs_quantised[level:level+1], all_levels=False) | |
x_outs.append(x_out) | |
for level in reversed(range(self.levels)): | |
x_out = self.postprocess(x_outs[level]) # (32, 240, 45) | |
return x_out | |
class Residual_VQVAE(nn.Module): | |
def __init__(self, hps, input_dim=72): | |
super().__init__() | |
self.hps = hps | |
input_dim=hps.pose_dims | |
input_shape = (hps.sample_length, input_dim) | |
levels = hps.levels | |
downs_t = hps.downs_t | |
strides_t = hps.strides_t | |
emb_width = hps.emb_width | |
l_bins = hps.l_bins | |
mu = hps.l_mu | |
commit = hps.commit | |
root_weight = hps.root_weight | |
# spectral = hps.spectral | |
# multispectral = hps.multispectral | |
multipliers = hps.hvqvae_multipliers | |
use_bottleneck = hps.use_bottleneck | |
if use_bottleneck: | |
print('We use bottleneck!') | |
else: | |
print('We do not use bottleneck!') | |
if not hasattr(hps, 'dilation_cycle'): | |
hps.dilation_cycle = None | |
block_kwargs = dict(width=hps.width, depth=hps.depth, m_conv=hps.m_conv, \ | |
dilation_growth_rate=hps.dilation_growth_rate, \ | |
dilation_cycle=hps.dilation_cycle, \ | |
reverse_decoder_dilation=hps.vqvae_reverse_decoder_dilation) | |
self.sample_length = input_shape[0] | |
x_shape, x_channels = input_shape[:-1], input_shape[-1] | |
self.x_shape = x_shape | |
self.downsamples = calculate_strides(strides_t, downs_t) | |
self.hop_lengths = np.cumprod(self.downsamples) | |
self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)] | |
self.levels = levels | |
if multipliers is None: | |
self.multipliers = [1] * levels | |
else: | |
assert len(multipliers) == levels, "Invalid number of multipliers" | |
self.multipliers = multipliers | |
def _block_kwargs(level): | |
this_block_kwargs = dict(block_kwargs) | |
this_block_kwargs["width"] *= self.multipliers[level] | |
this_block_kwargs["depth"] *= self.multipliers[level] | |
return this_block_kwargs | |
encoder = lambda level: Encoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) # different from supplemental | |
decoder = lambda level: Decoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
for level in range(levels): | |
self.encoders.append(encoder(level)) | |
self.decoders.append(decoder(level)) | |
if use_bottleneck: | |
self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels) # 512, 512, 0.99, 1 | |
else: | |
self.bottleneck = NoBottleneck(levels) | |
self.downs_t = downs_t | |
self.strides_t = strides_t | |
self.l_bins = l_bins | |
self.commit = commit | |
self.root_weight = root_weight | |
self.reg = hps.reg if hasattr(hps, 'reg') else 0 | |
self.acc = hps.acc if hasattr(hps, 'acc') else 0 | |
self.vel = hps.vel if hasattr(hps, 'vel') else 0 | |
if self.reg == 0: | |
print('No motion regularization!') | |
# self.spectral = spectral | |
# self.multispectral = multispectral | |
def preprocess(self, x): | |
# x: NTC [-1,1] -> NCT [-1,1] | |
assert len(x.shape) == 3 | |
x = x.permute(0,2,1).float() | |
return x | |
def postprocess(self, x): | |
# x: NTC [-1,1] <- NCT [-1,1] | |
x = x.permute(0,2,1) | |
return x | |
def _decode(self, zs, start_level=0, end_level=None): | |
# Decode | |
if end_level is None: | |
end_level = self.levels | |
assert len(zs) == end_level - start_level | |
xs_quantised = self.bottleneck.decode(zs, start_level=start_level, end_level=end_level) | |
assert len(xs_quantised) == end_level - start_level | |
# Use only lowest level | |
decoder, x_quantised = self.decoders[start_level], xs_quantised[0:1] | |
x_out = decoder(x_quantised, all_levels=False) | |
x_out = self.postprocess(x_out) | |
return x_out | |
def decode(self, zs, start_level=0, end_level=None, bs_chunks=1): | |
z_chunks = [t.chunk(z, bs_chunks, dim=0) for z in zs] | |
x_outs = [] | |
for i in range(bs_chunks): | |
zs_i = [z_chunk[i] for z_chunk in z_chunks] | |
x_out = self._decode(zs_i, start_level=start_level, end_level=end_level) | |
x_outs.append(x_out) | |
return t.cat(x_outs, dim=0) | |
def _encode(self, x, start_level=0, end_level=None): | |
# Encode | |
if end_level is None: | |
end_level = self.levels | |
x_in = self.preprocess(x) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
zs = self.bottleneck.encode(xs) | |
return zs[start_level:end_level] | |
def encode(self, x, start_level=0, end_level=None, bs_chunks=1): | |
x_chunks = t.chunk(x, bs_chunks, dim=0) | |
zs_list = [] | |
for x_i in x_chunks: | |
zs_i = self._encode(x_i, start_level=start_level, end_level=end_level) | |
zs_list.append(zs_i) | |
zs = [t.cat(zs_level_list, dim=0) for zs_level_list in zip(*zs_list)] | |
return zs | |
def sample(self, n_samples): | |
zs = [t.randint(0, self.l_bins, size=(n_samples, *z_shape), device=mydevice) for z_shape in self.z_shapes] | |
return self.decode(zs) | |
def forward(self, x): # ([256, 80, 282]) | |
metrics = {} | |
N = x.shape[0] | |
# Encode/Decode | |
x_in = self.preprocess(x) # ([256, 282, 80]) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
# xs[0]: (32, 512, 30) | |
zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs) #xs[0].shape=([256, 512, 5]) | |
''' | |
zs[0]: (32, 30) | |
xs_quantised[0]: (32, 512, 30) | |
commit_losses[0]: 0.0009 | |
quantiser_metrics[0]: | |
fit 0.4646 | |
pn 0.0791 | |
entropy 5.9596 | |
used_curr 512 | |
usage 512 | |
dk 0.0006 | |
''' | |
x_outs = [] | |
for level in range(self.levels): | |
decoder = self.decoders[level] | |
x_out = decoder(xs_quantised[level:level+1], all_levels=False) | |
assert_shape(x_out, x_in.shape) | |
x_outs.append(x_out) | |
# x_outs[0]: (32, 45, 240) | |
# Loss | |
# def _spectral_loss(x_target, x_out, self.hps): | |
# if hps.use_nonrelative_specloss: | |
# sl = spectral_loss(x_target, x_out, self.hps) / hps.bandwidth['spec'] | |
# else: | |
# sl = spectral_convergence(x_target, x_out, self.hps) | |
# sl = t.mean(sl) | |
# return sl | |
# def _multispectral_loss(x_target, x_out, self.hps): | |
# sl = multispectral_loss(x_target, x_out, self.hps) / hps.bandwidth['spec'] | |
# sl = t.mean(sl) | |
# return sl | |
recons_loss = t.zeros(()).cuda() | |
regularization = t.zeros(()).cuda() | |
velocity_loss = t.zeros(()).cuda() | |
acceleration_loss = t.zeros(()).cuda() | |
# spec_loss = t.zeros(()).to(x.device) | |
# multispec_loss = t.zeros(()).to(x.device) | |
# x_target = audio_postprocess(x.float(), self.hps) | |
x_target = x.float() | |
for level in reversed(range(self.levels)): | |
x_out = self.postprocess(x_outs[level]) # (32, 240, 45) | |
# x_out = audio_postprocess(x_out, self.hps) | |
scale_factor = t.ones(self.hps.pose_dims).to(x_target.device) | |
scale_factor[:3]=self.root_weight | |
x_target = x_target * scale_factor | |
x_out = x_out * scale_factor | |
# this_recons_loss = _loss_fn(loss_fn, x_target, x_out, hps) | |
this_recons_loss = _loss_fn(x_target, x_out) | |
# this_spec_loss = _spectral_loss(x_target, x_out, hps) | |
# this_multispec_loss = _multispectral_loss(x_target, x_out, hps) | |
metrics[f'recons_loss_l{level + 1}'] = this_recons_loss | |
# metrics[f'spectral_loss_l{level + 1}'] = this_spec_loss | |
# metrics[f'multispectral_loss_l{level + 1}'] = this_multispec_loss | |
recons_loss += this_recons_loss | |
# spec_loss += this_spec_loss | |
# multispec_loss += this_multispec_loss | |
regularization += t.mean((x_out[:, 2:] + x_out[:, :-2] - 2 * x_out[:, 1:-1])**2) | |
velocity_loss += _loss_fn( x_out[:, 1:] - x_out[:, :-1], x_target[:, 1:] - x_target[:, :-1]) | |
acceleration_loss += _loss_fn(x_out[:, 2:] + x_out[:, :-2] - 2 * x_out[:, 1:-1], x_target[:, 2:] + x_target[:, :-2] - 2 * x_target[:, 1:-1]) | |
# if not hasattr(self.) | |
commit_loss = sum(commit_losses) | |
# loss = recons_loss + self.spectral * spec_loss + self.multispectral * multispec_loss + self.commit * commit_loss | |
# pdb.set_trace() | |
loss = recons_loss + commit_loss * self.commit + self.reg * regularization + self.vel * velocity_loss + self.acc * acceleration_loss | |
''' x:-0.8474 ~ 1.1465 | |
0.2080 | |
5.5e-5 * 0.02 | |
0.0011 | |
0.0163 * 1 | |
0.0274 * 1 | |
''' | |
encodings = F.one_hot(zs[0].reshape(-1), self.hps.l_bins).float() | |
avg_probs = t.mean(encodings, dim=0) | |
perplexity = t.exp(-t.sum(avg_probs * t.log(avg_probs + 1e-10))) | |
with t.no_grad(): | |
# sc = t.mean(spectral_convergence(x_target, x_out, hps)) | |
# l2_loss = _loss_fn("l2", x_target, x_out, hps) | |
l1_loss = _loss_fn(x_target, x_out) | |
# linf_loss = _loss_fn("linf", x_target, x_out, hps) | |
quantiser_metrics = average_metrics(quantiser_metrics) | |
metrics.update(dict( | |
loss = loss, | |
recons_loss=recons_loss, | |
# spectral_loss=spec_loss, | |
# multispectral_loss=multispec_loss, | |
# spectral_convergence=sc, | |
# l2_loss=l2_loss, | |
l1_loss=l1_loss, | |
# linf_loss=linf_loss, | |
commit_loss=commit_loss, | |
regularization=regularization, | |
velocity_loss=velocity_loss, | |
acceleration_loss=acceleration_loss, | |
perplexity=perplexity, | |
**quantiser_metrics)) | |
for key, val in metrics.items(): | |
metrics[key] = val.detach() | |
return { | |
# "poses_feat":vq_latent, | |
# "embedding_loss":embedding_loss, | |
# "perplexity":perplexity, | |
"rec_pose": x_out, | |
"loss": loss, | |
"metrics": metrics, | |
"embedding_loss": commit_loss * self.commit, | |
} | |
if __name__ == '__main__': | |
''' | |
cd codebook/ | |
python vqvae.py --config=./codebook.yml --train --no_cuda 2 --gpu 2 | |
''' | |
import yaml | |
from pprint import pprint | |
from easydict import EasyDict | |
with open(args.config) as f: | |
config = yaml.safe_load(f) | |
for k, v in vars(args).items(): | |
config[k] = v | |
pprint(config) | |
config = EasyDict(config) | |
x = t.rand(32, 40, 15 * 9).to(mydevice) | |
model = VQVAE(config.VQVAE, 15 * 9) # n_joints * n_chanels | |
model = nn.DataParallel(model, device_ids=[eval(i) for i in config.no_cuda]) | |
model = model.to(mydevice) | |
model = model.train() | |
output, loss, metrics = model(x) | |
pdb.set_trace() | |